scholarly journals Clenbuterol plasma concentrations after therapeutic administration in fit Standardbred horses: threshold recommendations

2021 ◽  
pp. 1-8
Author(s):  
K.H. McKeever ◽  
H.C. Manso Filho ◽  
E.M. Rankins ◽  
C.S. Duchamp ◽  
Y. Salah ◽  
...  

Clenbuterol, (RS)-1-(4-amino-3,5-dichlorophenyl)-2-(tert-butylamino)ethan-1-ol, as Ventipulmin is an FDA approved β2 agonist medication for the management of airway obstruction in horses. Administration above the FDA approved doses for clenbuterol produces repartitioning effects, which have led to restrictions on its use in human athletics and Quarter Horse and Thoroughbred racing. Clenbuterol, however has long been used therapeutically at FDA approved doses in Harness racing. The goal of this study was to identify a withdrawal time guideline for its use at FDA approvsed dose levels in Harness racing, where horses may start at seven-day intervals. Eight healthy, moderately fit Standardbred horses (4 mares, 4 geldings, weight 491±40 kg, age 13±2 years) were administered 0.8 μg/kg of clenbuterol as Ventipulmin syrup twice daily (BID) for three days. Blood samples were collected prior to dosing and at 1, 24, 48 and 96 h post administration. Clenbuterol was quantified in all samples using the New York Drug Testing and Research Laboratory ISO-17025 Racing and Medication Testing Consortium (RMTC) accredited quantitative procedure. The lower limit of quantitation of the method was 1.0 pg/ml, and three data points at 96 h post administration were censored. One horse developed diarrhoea and data from this horse was excluded from the overall analysis. Plasma regulatory thresholds were calculated using the 95/95 tolerance method and Gauss Camp Meidell at P=0.05 and P=0.001. Horses were also evaluated for effects of clenbuterol on body composition using body mass and ultrasound measurements of rump fat thickness. There were no effects (P>0.05) of clenbuterol on any of the measures including fat mass and fat free mass and thus no repartitioning effect was observed. The pharmacokinetic data and the 96 h data set support the therapeutic use of clenbuterol in Harness horses at the FDA approved 0.8 μg/kg BID dose for three days and suggest a 41 pg/ml regulatory threshold for a 96 h withdrawal time with a P=0.001 probability of randomly exceeding this regulatory threshold.

2018 ◽  
Vol 62 (6) ◽  
pp. e00242-18 ◽  
Author(s):  
Fekade B. Sime ◽  
Janine Stuart ◽  
Jenie Butler ◽  
Therese Starr ◽  
Steven C. Wallis ◽  
...  

ABSTRACT To date, there is no information on the intravenous (i.v.) posaconazole pharmacokinetics for intensive care unit (ICU) patients. This prospective observational study aimed to describe the pharmacokinetics of a single dose of i.v. posaconazole in critically ill patients. Patients with no history of allergy to triazole antifungals and requiring systemic antifungal therapy were enrolled if they were aged ≥18 years, central venous access was available, they were not pregnant, and they had not received prior posaconazole or drugs interacting with posaconazole. A single dose of 300 mg posaconazole was administered over 90 min. Total plasma concentrations were measured from serial plasma samples collected over 48 h, using a validated chromatographic method. The pharmacokinetic data set was analyzed by noncompartmental methods. Eight patients (7 male) were enrolled with the following characteristics: median age, 46 years (interquartile range [IQR], 40 to 51 years); median weight, 68 kg (IQR, 65 to 82 kg); and median albumin concentration, 20 g/liter (IQR, 18 to 24 g/liter). Median (IQR) pharmacokinetic parameter estimates were as follows: observed maximum concentration during sampling period (Cmax), 1,702 ng/ml (1,352 to 2,141 ng/ml); area under the concentration-time curve from zero to infinity (AUC0–∞), 17,932 ng · h/ml (13,823 to 27,905 ng · h/ml); clearance (CL), 16.8 liters/h (11.1 to 21.7 liters/h); and volume of distribution (V), 529.1 liters (352.2 to 720.6 liters). The V and CL were greater than 2-fold and the AUC0–∞ was 39% of the values reported for heathy volunteers. The AUC0–∞ was only 52% of the steady-state AUC0–24 reported for hematology patients. The median of estimated average steady-state concentrations was 747 ng/ml (IQR, 576 to 1,163 ng/ml), which is within but close to the lower end of the previously recommended therapeutic range of 500 to 2,500 ng/ml. In conclusion, we observed different pharmacokinetics of i.v. posaconazole in this cohort of critically ill patients compared to those in healthy volunteers and hematology patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dong Liang ◽  
Jing Ma ◽  
Bo Wei

AbstractTo investigate the effect of simulated weightlessness on the pharmacokinetics of orally administered moxifloxacin and the antacid Maalox or the antidiarrheal Pepto-Bismol using a tail-suspended (TS) rat model of microgravity. Fasted control and TS, jugular-vein-cannulated, male Sprague-Dawley rats received either a single 5 mg/kg intravenous dose or a single 10 mg/kg oral dose of moxifloxacin alone or with a 0.625 mL/kg oral dose of Maalox or a 1.43 mL/kg oral dose of Pepto-Bismol. Plasma concentrations of moxifloxacin were measured by HPLC. Pharmacokinetic data were analyzed using WinNonlin. Simulated weightlessness had no effect on moxifloxacin disposition after intravenous administration but significantly decreased the extent of moxifloxacin oral absorption. The coadministration of moxifloxacin with Maalox to either control or TS rats caused significant reductions in the rate and extent of moxifloxacin absorption. In contrast, the coadministration of moxifloxacin with Pepto-Bismol to TS rats had no significant effect on either the rate or the extent of moxifloxacin absorption. These interactions showed dose staggering when oral administrations of Pepto-Bismol and moxifloxacin were separated by 60 min in control rats but not in TS rats. Dose staggering was more apparent after the coadministration of Maalox and moxifloxacin in TS rats.


2021 ◽  
Vol 41 (3) ◽  
pp. 261-272
Author(s):  
Chau Wei Ling ◽  
Kamal Sud ◽  
Connie Van ◽  
Syed Tabish Razi Zaidi ◽  
Rahul P. Patel ◽  
...  

The objectives of this study were to provide a summary of the pharmacokinetic data of some intraperitoneal (IP) antibiotics that could be used for both empirical and culture-directed therapy, as per the ISPD recommendations, and examine factors to consider when using IP antibiotics for the management of automated peritoneal dialysis (APD)-associated peritonitis. A literature search of PubMed, EMBASE, Scopus, MEDLINE and Google Scholar for articles published between 1998 and 2020 was conducted. To be eligible, articles had to describe the use of antibiotics via the IP route in adult patients ≥18 years old on APD in the context of pharmacokinetic studies or case reports/series. Articles describing the use of IP antibiotics that had been recently reviewed (cefazolin, vancomycin, gentamicin and ceftazidime) or administered for non-APD-associated peritonitis were excluded. A total of 1119 articles were identified, of which 983 abstracts were screened. Seventy-three full-text articles were assessed for eligibility. Eight records were included in the final study. Three reports had pharmacokinetic data in patients on APD without peritonitis. Each of cefepime 15 mg/kg IP, meropenem 0.5 g IP and fosfomycin 4 g IP given in single doses achieved drug plasma concentrations above the minimum inhibitory concentration for treating the susceptible organisms. The remaining five records were case series or reports in patients on APD with peritonitis. While pharmacokinetic data support intermittent cefepime 15 mg/kg IP daily, only meropenem 0.5 g IP and fosfomycin 4 g IP are likely to be effective if given in APD exchanges with dwell times of 15 h. Higher doses may be required in APD with shorter dwell times. Information on therapeutic efficacy was derived from case reports/series in individual patients and without therapeutic drug monitoring. Until more pharmacokinetic data are available on these antibiotics, it would be prudent to shift patients who develop peritonitis on APD to continuous ambulatory peritoneal dialysis, where pharmacokinetic information is more readily available.


2016 ◽  
Vol 60 (8) ◽  
pp. 4860-4868
Author(s):  
Todd J. Zurlinden ◽  
Garrett J. Eppers ◽  
Brad Reisfeld

ABSTRACTRifapentine (RPT) is a rifamycin antimycobacterial and, as part of a combination therapy, is indicated for the treatment of pulmonary tuberculosis (TB) caused byMycobacterium tuberculosis. Although the results from a number of studies indicate that rifapentine has the potential to shorten treatment duration and enhance completion rates compared to other rifamycin agents utilized in antituberculosis drug regimens (i.e., regimens 1 to 4), its optimal dose and exposure in humans are unknown. To help inform such an optimization, a physiologically based pharmacokinetic (PBPK) model was developed to predict time course, tissue-specific concentrations of RPT and its active metabolite, 25-desacetyl rifapentine (dRPT), in humans after specified administration schedules for RPT. Starting with the development and verification of a PBPK model for rats, the model was extrapolated and then tested using human pharmacokinetic data. Testing and verification of the models included comparisons of predictions to experimental data in several rat tissues and time course RPT and dRPT plasma concentrations in humans from several single- and repeated-dosing studies. Finally, the model was used to predict RPT concentrations in the lung during the intensive and continuation phases of a current recommended TB treatment regimen. Based on these results, it is anticipated that the PBPK model developed in this study will be useful in evaluating dosing regimens for RPT and for characterizing tissue-level doses that could be predictors of problems related to efficacy or safety.


2020 ◽  
Vol 150 (12) ◽  
pp. 3180-3189
Author(s):  
Hong Chang Tan ◽  
Jean W Hsu ◽  
Jean-Paul Kovalik ◽  
Alvin Eng ◽  
Weng Hoong Chan ◽  
...  

ABSTRACT Background Plasma concentrations of branched-chain amino acids (BCAAs) are elevated in obese individuals with insulin resistance (IR) and decrease after bariatric surgery. However, the metabolic mechanisms are unclear. Objectives Our objectives are to compare leucine kinetics between morbidly obese and healthy-weight individuals cross-sectionally, and to prospectively evaluate changes in the morbidly obese after sleeve gastrectomy. We hypothesized that leucine oxidation is slower in obese individuals and increases after surgery. Methods Ten morbidly obese [BMI (in kg/m2) ≥32.5, age 21–50 y] and 10 healthy-weight participants (BMI <25), matched for age (median ∼30 y) but not gender, were infused with [U-13C6] leucine and [2H5] glycerol to quantify leucine and glycerol kinetics. Morbidly obese participants were studied again 6 mo postsurgery. Primary outcomes were kinetic parameters related to BCAA metabolism. Data were analyzed by nonparametric methods and presented as median (IQR). Results Participants with obesity had IR with an HOMA-IR (4.89; 4.36–8.76) greater than that of healthy-weight participants (1.32; 0.99–1.49; P < 0.001) and had significantly faster leucine flux [218; 196–259 compared with 145; 138–149 μmol · kg fat-free mass (FFM)−1 · h−1], oxidation (24.0; 17.9–29.8 compared with 16.1; 14.3–18.5 μmol · kg FFM−1 · h−1), and nonoxidative disposal (204; 190–247 compared with 138; 129–140 μmol · kg FFM−1 · h−1) (P < 0.017 for all). After surgery, the morbidly obese had a marked improvement in IR (3.54; 3.06–6.08; P = 0.008) and significant reductions in BCAA concentrations (113; 95–157 μmol/L) and leucine oxidation (9.37; 6.85–15.2 μmol · kg FFM−1 · h−1) (P = 0.017 for both). Further, leucine flux in this group correlated significantly with IR (r = 0.78, P < 0.001). Conclusions BCAA oxidation is not impaired but elevated in individuals with morbid obesity. Plasma BCAA concentrations are lowered after surgery owing to slower breakdown of body proteins as insulin's ability to suppress proteolysis is restored. These findings suggest that IR is the underlying cause and not the consequence of elevated BCAAs in obesity.


2015 ◽  
Vol 18 (2) ◽  
pp. 171 ◽  
Author(s):  
Jessica Cusato ◽  
Sarah Allegra ◽  
Amedeo De Nicolò ◽  
Lucio Boglione ◽  
Giovanna Fatiguso ◽  
...  

PURPOSE: Triple therapy for HCV-1 infection consists in boceprevir or telaprevir, ribavirin and PEG-interferon. Telaprevir is a P-glycoprotein substrate and it is metabolized by CYP3A4/5. No data have been published on intracellular penetration of telaprevir. We determined peripheral blood mononuclear cells (PBMCs) and trough plasma S and R telaprevir isomers concentrations; moreover, we evaluated the influence of some single nucleotide polymorphisms (SNPs) on these pharmacokinetic data after 1 month of triple therapy in humans. METHODS: Plasma and intracellular telaprevir concentrations were determined at the end of dosing interval (Ctrough) using ULPC-MS/MS validated methods; allelic discrimination was performed through real-time PCR. RESULTS: Median telaprevir Ctrough plasma concentrations were 2579 ng/mL and 2233 ng/mL for the pharmacologically more active S, and R, enantiomers, respectively, with median S/R plasma ratio of 1.11. In PBMC, the medians were 6863 ng/mL and 1096 ng/mL for S and R, respectively, with median S/R being 5.73. The PBMC:plasma ratio for S was 2.59 for R. Plasma ribavirin concentrations were directly correlated with plasma S-telaprevir concentrations. In linear regression analysis, only CYP24A1_rs2585428 SNP (p=0.003) and body mass index (p=0.038) were able to predict S-telaprevir PBMC concentrations. CONCLUSIONS: Our preliminary data could increase the understanding of mechanisms underlying telaprevir intracellular and plasma exposure, suggesting the implementation of pharmacogenetics in these drug kinetic studies. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2000 ◽  
Vol 18 (4) ◽  
pp. 927-927 ◽  
Author(s):  
J. Zujewski ◽  
I.D. Horak ◽  
C.J. Bol ◽  
R. Woestenborghs ◽  
C. Bowden ◽  
...  

PURPOSE: To determine the maximum-tolerated dose, toxicities, and pharmacokinetic profile of the farnesyl protein transferase inhibitor R115777 when administered orally bid for 5 days every 2 weeks. PATIENTS AND METHODS: Twenty-seven patients with a median age of 58 years received 85 cycles of R115777 using an intrapatient and interpatient dose escalation schema. Drug was administered orally at escalating doses as a solution (25 to 850 mg bid) or as pellet capsules (500 to 1300 mg bid). Pharmacokinetics were assessed after the first dose and the last dose administered during cycle 1. RESULTS: Dose-limiting toxicity of grade 3 neuropathy was observed in one patient and grade 2 fatigue (decrease in two performance status levels) was seen in four of six patients treated with 1,300 mg bid. The most frequent clinical grade 2 or 3 adverse events in any cycle included nausea, vomiting, headache, fatigue, anemia, and hypotension. Myelosuppression was mild and infrequent. Peak plasma concentrations of R115777 were achieved within 0.5 to 4 hours after oral drug administration. The elimination of R115777 from plasma was biphasic, with sequential half-lives of about 5 hours and 16 hours. There was little drug accumulation after bid dosing, and steady-state concentrations were achieved within 2 to 3 days. The pharmacokinetics were dose proportional in the 25 to 325 mg/dose range for the oral solution. Urinary excretion of unchanged R115777 was less than 0.1% of the oral dose. One patient with metastatic colon cancer treated at the 500-mg bid dose had a 46% decrease in carcinoembryonic antigen levels, improvement in cough, and radiographically stable disease for 5 months. CONCLUSION: R115777 is bioavailable after oral administration and has an acceptable toxicity profile. Based upon pharmacokinetic data, the recommended dose for phase II trials is 500 mg orally bid (total daily dose, 1,000 mg) for 5 consecutive days followed by 9 days of rest. Studies of continuous dosing and studies of R115777 in combination with chemotherapy are ongoing.


2019 ◽  
Vol 9 ◽  
pp. 204512531983688
Author(s):  
Emma Tay ◽  
Andreas Sotiriou ◽  
Garry G. Graham ◽  
Kay Wilhelm ◽  
Leone Snowden ◽  
...  

Intentional drug overdoses with antidepressant and antipsychotic medications are an increasingly common problem. Currently, there is little guidance with regard to reintroduction of these medications after intentional overdoses. We have used published toxicological and pharmacokinetic data to obtain factors which control the recovery from overdoses. From such data, we have proposed guidance regarding their reintroduction, provided there are no adverse effects or contraindications. Tentatively, we suggest that when adverse effects from the overdose are lost, treatment could recommence after a further mean half-life of elimination. Most antidepressant and antipsychotic drugs are metabolized by cytochrome P450 enzymes and, where cytochrome P450 inhibitors are co-ingested, serial plasma concentrations should optimally be obtained in order to assess a suitable time for reintroduction of the psychoactive drugs. We hope the proposals presented will stimulate research and discussion that lead to better guidance for clinicians concerning reintroduction of psychoactive medication after intentional overdose.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1816 ◽  
Author(s):  
You Jin Han ◽  
Bitna Kang ◽  
Eun-Ju Yang ◽  
Min-Koo Choi ◽  
Im-Sook Song

Glycyrrhizae Radix is widely used as herbal medicine and is effective against inflammation, various cancers, and digestive disorders. We aimed to develop a sensitive and simultaneous analytical method for detecting glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin, the four marker components of Glycyrrhizae Radix extract (GRE), in rat plasma using liquid chromatography-tandem mass spectrometry and to apply this analytical method to pharmacokinetic studies. Retention times for glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin were 7.8 min, 4.1 min, 3.1 min, and 2.0 min, respectively, suggesting that the four analytes were well separated without any interfering peaks around the peak elution time. The lower limit of quantitation was 2 ng/mL for glycyrrhizin and 0.2 ng/mL for isoliquiritigenin, liquiritigenin, and liquiritin; the inter- and intra-day accuracy, precision, and stability were less than 15%. Plasma concentrations of glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin were quantified for 24 h after a single oral administration of 1 g/kg GRE to four rats. Among the four components, plasma concentration of glycyrrhizin was the highest and exhibited a long half-life (23.1 ± 15.5 h). Interestingly, plasma concentrations of isoliquiritigenin and liquiritigenin were restored to the initial concentration at 4–10 h after the GRE administration, as evidenced by liquiritin biotransformation into isoliquiritigenin and liquiritigenin, catalyzed by fecal lysate and gut wall enzymes. In conclusion, our analytical method developed for detecting glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin could be successfully applied to investigate their pharmacokinetic properties in rats and would be useful for conducting further studies on the efficacy, toxicity, and biopharmaceutics of GREs and their marker components.


Sign in / Sign up

Export Citation Format

Share Document