Inhibition of Aspergillus flavus growth and aflatoxin B1 production by natamycin

2021 ◽  
pp. 1-16
Author(s):  
P. Chang ◽  
B. Tai ◽  
M. Zheng ◽  
Q. Yang ◽  
F. Xing

Aspergillus flavus causes huge crop losses, reduces crop quality and has adverse effects on human and animal health. A large amount of food contaminated with aflatoxin can greatly increase the risk of liver cancer. Therefore, prevention and control of aflatoxin production have aroused attention of research in various countries. Natamycin extracted from Streptomyces spp. has been widely used in production practice due to its good specificity and safety. Here, we found that natamycin could significantly inhibit fungal growth, conidia germination, ergosterol and AFB1 production by A. flavus in a dose-dependent manner. Scanning electron microscope analysis indicated that the number of conidia was decreased, the outer wall of conidia was destroyed, and the mycelia were shrivelled and tangled by natamycin. RNA-Seq data indicated that natamycin inhibited fungal growth and conidia development of A. flavus by significantly down-regulating some genes involved in ergosterol biosynthesis, such as Erg13, HMG1 and HMG2. It inhibited conidia germination by significantly down-regulating some genes related to conidia development, such as FluG and VosA. After natamycin exposure, the decreased ratio of aflS/aflR caused by the down-regulation of all the structural genes, which subsequently resulted in the suppression of AFB1 production. In conclusion, this study served to reveal the inhibitory mechanisms of natamycin on fungal growth and AFB1 biosynthesis in A. flavus and to provide solid evidence for its application in controlling AFB1 contamination.

2020 ◽  
Vol 50 (6) ◽  
Author(s):  
Samuel Botião Nerilo ◽  
Jéssica Cristina Zoratto Romoli ◽  
Lydiana Polis Nakasugi ◽  
Natana Souza Zampieri ◽  
Simone Aparecida Galerani Mossini ◽  
...  

ABSTRACT: Essential oils are possible alternatives to the use of synthetic pesticides for control of fungal contamination. Ginger (Zingiber officinale) essential oil (GEO) is known for having antifungal and antiaflatoxigenic properties, but its use as a fumigant in situ has not been studied yet. The aim of this study was to evaluate GEO’s effects upon Aspergillus flavus as a fumigant agent in stored maize grains. The main compounds reported in GEO were α-zingiberene (23.85%) and geranial (14.16%), characterized by gas chromatography-mass spectrometry and nuclear magnetic resonance. The GEO was used as a fumigant in irradiated maize grains in concentrations ranging from 5 to 50 µg/g and the resulting effects were compared to a synthetic antifungal agent (carbendazim and thiram), an antifungal traditionally used for seed treatment. The antifungal efficacy of GEO against A. flavus has been proven in a dose-dependent manner through in situ (maize grains) test. The GEO inhibited aflatoxin production at concentrations 25 and 50 µg/g and controlled fungal growth. Therefore, GEO can be used as an effective and non-toxic alternative to conventional treatments in stored maize grains for the natural control of A. flavus.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Flávio Dias Ferreira ◽  
Simone Aparecida Galerani Mossini ◽  
Francine Maery Dias Ferreira ◽  
Carla Cristina Arrotéia ◽  
Christiane Luciana da Costa ◽  
...  

The essential oil fromCurcuma longaL. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%),α-turmerone (23.5%) andβ-turmerone (22.7%). The antifungal activities of the oil were studied with regard toAspergillus flavusgrowth inhibition and altered morphology, as preliminary studies indicated that the essential oil fromC. longainhibitedAspergillus flavusLink aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to 5.0% v/v, and the concentration of curcumin was 0.01–0.5% v/v. The effects on sporulation, spore viability, and fungal morphology were determined. The essential oil exhibited stronger antifungal activity than curcumin onA. flavus. The essential oil reduced the fungal growth in a concentration-dependent manner.A. flavusgrowth rate was reduced byC. longaessential oil at 0.10%, and this inhibition effect was more efficient in concentrations above 0.50%. Germination and sporulation were 100% inhibited in 0.5% oil. Scanning electron microscopy (SEM) ofA. flavusexposed to oil showed damage to hyphae membranes and conidiophores. Because the fungus is a plant pathogen and aflatoxin producer,C. longaessential oil may be used in the management of host plants.


2013 ◽  
Vol 6 (1) ◽  
pp. 43-50 ◽  
Author(s):  
V. Aiko ◽  
A. Mehta

Cinnamon, cardamom, star anise and clove were studied for their effect on growth of Aspergillus flavus and aflatoxin B1 (AFB1) synthesis. The experiments were carried out in yeast extract sucrose culture broth as well as in rice supplemented with spices. AFB1 produced was analysed qualitatively and quantitatively using thin layer chromatography and high performance liquid chromatography, respectively. At a concentration of 10 mg/ml, cardamom and star anise did not exhibit any antifungal or anti-aflatoxigenic activity in culture broth, whereas cinnamon and clove inhibited A. flavus growth completely. The minimum inhibitory concentrations of cinnamon and clove were 4 and 2 mg/ml, respectively. Concentrations of cinnamon and clove below their minimum inhibitory concentrations showed enhanced fungal growth, while AFB1 synthesis was reduced. Clove inhibited the synthesis of AFB1 significantly up to 99% at concentrations ≥1.0 mg/ml. The spices also inhibited AFB1 synthesis in rice at 5 mg/g, although fungal growth was not inhibited. Clove and cinnamon inhibited AFB1 synthesis significantly up to 99 and 92%, respectively, and star anise and cardamom by 41 and 23%, respectively. The results of this study suggest the use of whole spices rather than their essential oils for controlling fungal and mycotoxin contamination in food grains.


2002 ◽  
Vol 65 (12) ◽  
pp. 1984-1987 ◽  
Author(s):  
J. E. MELLON ◽  
P. J. COTTY

Soybean lines lacking lipoxygenase (LOX) activity were compared with soybean lines having LOX activity for the ability to support growth and aflatoxin B1 production by the fungal seed pathogen Aspergillus flavus. Whole seeds, broken seeds, and heat-treated (autoclaved) whole seeds were compared. Broken seeds, irrespective of LOX presence, supported excellent fungal growth and the highest aflatoxin levels. Autoclaved whole seeds, with or without LOX, produced good fungal growth and aflatoxin levels approaching those of broken seeds. Whole soybean seeds supported sparse fungal growth and relatively low aflatoxin levels. There was no significant difference in aflatoxin production between whole soybean seeds either with or without LOX, although there did seem to be differences among the cultivars tested. The heat treatment eliminated LOX activity (in LOX+ lines), yet aflatoxin levels did not change substantially from the broken seed treatment. Broken soybean seeds possessed LOX activity (in LOX+ lines) and yet yielded the highest aflatoxin levels. The presence of active LOX did not seem to play the determinant role in the susceptibility of soybean seeds to fungal pathogens. Seed coat integrity and seed viability seem to be more important characteristics in soybean seed resistance to aflatoxin contamination. Soybean seeds lacking LOX seem safe from the threat of increased seed pathogen susceptibility.


2011 ◽  
Vol 35 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Rosane Tamara da Silva Medeiros ◽  
Edlayne Gonçalez ◽  
Roberto Carlos Felicio ◽  
Joana D'arc Felicio

The presence of mycotoxins as a result of fungal attack can occur before, after and during the harvest and storage operations on agricultural crops and food commodities. Considering the inhibitory property of essential plant oils on the mycelial development of fungi and the importance of Aspergillus flavus, the main producer of aflatoxins, this research was designed to evaluate the toxicity of essential oil from Pittosporum undulatum against A. flavus. The essential oils were obtained from P. undulatum leaves, collected in different months and analyzed by GC/MS. The oils were rich in hydrocarbon, monoterpenes and sesquiterpenes and it was observed a significant variation on the chemical composition of the essential oil of leaves at different months. Besides, the essential oils were tested against fungal growth and the results showed different spectrum of inhibition on A. flavus. However, the essential oils inhibited the aflatoxin B1 production.


1994 ◽  
Vol 51 (2) ◽  
pp. 369-373 ◽  
Author(s):  
H. Fonseca ◽  
C.R. Gallo ◽  
M.A. Calori-Domingues ◽  
E.M. Gloria ◽  
P.J. Approbatto ◽  
...  

The present experiment aimed to evaluate the effect of sodium ortho-phenylphenate (SOP) application to in-shell moist peanuts for the control of aflatoxin production. Previous studies showed the need to improve the SOP solution distribution on peanut pods to evaluate the product. Thus, in this experiment the place of the spray system was the bag filler pipe of the pre-cleaning machine in the warehouse. In the 1989 rainy season two lots of 120 bags of in-shell moist peanuts were sprayed with 0.5 and 1% SOP solutions and aflatoxin production was not controlled. In the dry season of 1989 and in the rainy season of 1990, in-shell moist peanuts were sprayed with 5% SOP solution. The coverage of pods with the solution was efficient, allowing a uniform distribution of SOP solution on the pods. The results showed that only the 5.0% concentration of SOP solution utilized controlled the external fungal growth when a naked eye observation was made, however did not control aflatoxin production when applied to in-shell moist peanuts, probably due to the internal presence of Aspergillus flavus and because the fungicide could not penetrate inside to reach the kernels.


1977 ◽  
Vol 60 (1) ◽  
pp. 96-99
Author(s):  
Jo Ann L Hilldrup ◽  
Thomas Eadie ◽  
Gerald C Llewellyn

Abstract Unprocessed honey, Lilium longiflorium pollen, brood comb, whole larvae, and whole bees were inoculated with Aspergillus flavus NRRL 3251, A. flavus ATCC 15548, and A. parasiticus NRRL 2999. The fungi grew, sporulated, and produced various amounts of aflatoxin on all substrates except the unprocessed honey. The largest quantity of aflatoxin B1 was produced on whole larvae supporting A. flavus NRRL 3251 growth. A. parasiticus NRRL 2999 growing on whole larvae produced the most aflatoxin G1. Aflatoxins B2 and G2 were seldom detected. Apiarian substrates with the exception of honey seem capable of supporting fungal growth and resultant aflatoxin production.


Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 107 ◽  
Author(s):  
Tomohiro Furukawa ◽  
Shohei Sakuda

Aflatoxin contamination of crops is a worldwide problem, and elucidation of the regulatory mechanism of aflatoxin production, for example relative to the oxidative–antioxidative system, is needed. Studies have shown that oxidative stress induced by reactive oxygen species promotes aflatoxin production. However, superoxide has been suggested to have the opposite effect. Here, we investigated the effects of the superoxide generator, paraquat, and externally added superoxide dismutase (SOD) on aflatoxin production in Aspergillus flavus. Paraquat with an IC50 value of 54.9 µM inhibited aflatoxin production without affecting fungal growth. It increased cytosolic and mitochondrial superoxide levels and downregulated the transcription of aflatoxin biosynthetic cluster genes, including aflR, a key regulatory protein. The addition of bovine Cu/ZnSOD to the culture medium suppressed the paraquat-induced increase in superoxide levels, but it did not fully restore paraquat-inhibited aflatoxin production because bovine Cu/ZnSOD with an IC50 value of 17.9 µg/mL itself inhibited aflatoxin production. Externally added bovine Cu/ZnSOD increased the SOD activity in fungal cell extracts and upregulated the transcription of genes encoding Cu/ZnSOD and alcohol dehydrogenase. These results suggest that intracellular accumulation of superoxide impairs aflatoxin production by downregulating aflR expression, and that externally added Cu/ZnSOD also suppresses aflatoxin production by a mechanism other than canonical superoxide elimination activity.


1999 ◽  
Vol 89 (10) ◽  
pp. 902-907 ◽  
Author(s):  
Z.-Y. Chen ◽  
R. L. Brown ◽  
J. S. Russin ◽  
A. R. Lax ◽  
T. E. Cleveland

In this study, we found that the inhibition of fungal growth in potato dextrose broth (PDB) medium by the 14-kDa corn trypsin inhibitor (TI) protein, previously found to be associated with host resistance to aflatoxin production and active against various fungi, was relieved when exogenous α-amylase was added along with TI. No inhibitory effect of TI on fungal growth was observed when Aspergillus flavus was grown on a medium containing either 5% glucose or 1% gelatin as a carbon source. Further investigation found that TI not only inhibited fungal production of extracellular α-amylase when A. flavus was grown in PDB medium containing TI at 100 μg ml-1 but also reduced the enzymatic activity of A. flavus α-amylase by 27%. At a higher concentration, however, TI stimulated the production of α-amylase. The effect of TI on the production of amyloglucosidase, another enzyme involved in starch metabolism by the fungus, was quite different. It stimulated the production of this enzyme during the first 10 h at all concentrations studied. These studies suggest that the resistance of certain corn genotypes to A. flavus infection may be partially due to the ability of TI to reduce the production of extracellular fungal α-amylase and its activity, thereby limiting the availability of simple sugars for fungal growth. However, further investigation of the relationship between TI levels and fungal α-amylase expression in vivo is needed.


Sign in / Sign up

Export Citation Format

Share Document