Fungal Growth and Aflatoxin Production on Apiarian Substrates

1977 ◽  
Vol 60 (1) ◽  
pp. 96-99
Author(s):  
Jo Ann L Hilldrup ◽  
Thomas Eadie ◽  
Gerald C Llewellyn

Abstract Unprocessed honey, Lilium longiflorium pollen, brood comb, whole larvae, and whole bees were inoculated with Aspergillus flavus NRRL 3251, A. flavus ATCC 15548, and A. parasiticus NRRL 2999. The fungi grew, sporulated, and produced various amounts of aflatoxin on all substrates except the unprocessed honey. The largest quantity of aflatoxin B1 was produced on whole larvae supporting A. flavus NRRL 3251 growth. A. parasiticus NRRL 2999 growing on whole larvae produced the most aflatoxin G1. Aflatoxins B2 and G2 were seldom detected. Apiarian substrates with the exception of honey seem capable of supporting fungal growth and resultant aflatoxin production.

2018 ◽  
Vol 8 (9) ◽  
pp. 1655 ◽  
Author(s):  
Hyeong-Mi Kim ◽  
Hyunwoo Kwon ◽  
Kyeongsoon Kim ◽  
Sung-Eun Lee

Aspergillus flavus and A. parsiticus produce aflatoxins that are highly toxic to mammals and birds. In this study, the inhibitory effects of 1,8-cineole and t-cinnamaldehyde were examined on the growth of Aspergillus flavus ATCC 22546 and aflatoxin production. 1,8-Cineole showed 50% inhibition of fungal growth at a concentration of 250 ppm, while t-cinnamaldehyde almost completely inhibited fungal growth at a concentration of 50 ppm. Furthermore, no fungal growth was observed when the growth medium was treated with 100 ppm t-cinnamaldehyde. 1,8-Cineole also exhibited 50% inhibition on the production of aflatoxin B1 and aflatoxin B2 at a concentration of 100 ppm, while the addition of 100 ppm t-cinnamaldehyde completely inhibited aflatoxin production. These antiaflatoxigenic activities were related to a dramatic downregulation of the expression of aflE and aflL by 1,8-cineole, but the mode of action for t-cinnamaldehyde was unclear. Collectively, our results suggest that both of the compounds are promising alternatives to the currently used disinfectant, propionic acid, for food and feedstuff preservation.


1997 ◽  
Vol 60 (1) ◽  
pp. 84-87 ◽  
Author(s):  
ROBERT L. BROWN ◽  
THOMAS E. CLEVELAND ◽  
GARY A. PAYNE ◽  
CHARLES P. WOLOSHUK ◽  
DONALD G. WHITE

Kernels of a maize inbred that demonstrated resistance to aflatoxin production in previous studies were inoculated with an Aspergillus flavus strain containing the Escherichia coli β-d-glucuronidase reporter gene linked to a β-tubulin gene promoter and assessed for both fungal growth and aflatoxin accumulation. Prior to inoculation, kernels were pin-wounded through the pericarp to the endosperm, pin-wounded in the embryo region, or left unwounded. After 7 days incubation with the fungus, β-glucuronidase activity (fungal growth) in the kernels was quantified using a fluorogenic assay and aflatoxin B1 content of the same kernels was analyzed. Kernels of a susceptible inbred, similarly treated, served as controls. Results indicate a positive relationship between aflatoxin levels and the amount of fungal growth. However, resistant kernels wounded through the pericarp to the endosperm before inoculation supported an increase in aflatoxin B1 over levels observed in nonwounded kernels, without an increase in fungal growth. Wounding kernels of the resistant inbred through the embryo resulted in both the greatest fungal growth and the highest levels of aflatoxin B1 for this genotype. Maintenance of resistance to aflatoxin B1 in endosperm-wounded kernels may be due to the action of a mechanism which limits fungal access to the kernel embryo.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 391
Author(s):  
Christopher Hernandez ◽  
Laura Cadenillas ◽  
Anwar El Maghubi ◽  
Isaura Caceres ◽  
Vanessa Durrieu ◽  
...  

Aflatoxin B1 (AFB1) is a potent carcinogenic mycotoxin that contaminates numerous crops pre- and post-harvest. To protect foods and feeds from such toxins without resorting to pesticides, the use of plant extracts has been increasingly studied. The most interesting candidate plants are those with strong antioxidative activity because oxidation reactions may interfere with AFB1 production. The present study investigates how an aqueous extract of Mimosa tenuiflora bark affects both the growth of Aspergillus flavus and AFB1 production. The results reveal a dose-dependent inhibition of toxin synthesis with no impact on fungal growth. AFB1 inhibition is related to a down-modulation of the cluster genes of the biosynthetic pathway and especially to the two internal regulators aflR and aflS. Its strong anti-oxidative activity also allows the aqueous extract to modulate the expression of genes involved in fungal oxidative-stress response, such as msnA, mtfA, atfA, or sod1. Finally, a bio-guided fractionation of the aqueous extract demonstrates that condensed tannins play a major role in the anti-aflatoxin activity of Mimosa tenuiflora bark.


2013 ◽  
Vol 6 (1) ◽  
pp. 43-50 ◽  
Author(s):  
V. Aiko ◽  
A. Mehta

Cinnamon, cardamom, star anise and clove were studied for their effect on growth of Aspergillus flavus and aflatoxin B1 (AFB1) synthesis. The experiments were carried out in yeast extract sucrose culture broth as well as in rice supplemented with spices. AFB1 produced was analysed qualitatively and quantitatively using thin layer chromatography and high performance liquid chromatography, respectively. At a concentration of 10 mg/ml, cardamom and star anise did not exhibit any antifungal or anti-aflatoxigenic activity in culture broth, whereas cinnamon and clove inhibited A. flavus growth completely. The minimum inhibitory concentrations of cinnamon and clove were 4 and 2 mg/ml, respectively. Concentrations of cinnamon and clove below their minimum inhibitory concentrations showed enhanced fungal growth, while AFB1 synthesis was reduced. Clove inhibited the synthesis of AFB1 significantly up to 99% at concentrations ≥1.0 mg/ml. The spices also inhibited AFB1 synthesis in rice at 5 mg/g, although fungal growth was not inhibited. Clove and cinnamon inhibited AFB1 synthesis significantly up to 99 and 92%, respectively, and star anise and cardamom by 41 and 23%, respectively. The results of this study suggest the use of whole spices rather than their essential oils for controlling fungal and mycotoxin contamination in food grains.


2002 ◽  
Vol 65 (12) ◽  
pp. 1984-1987 ◽  
Author(s):  
J. E. MELLON ◽  
P. J. COTTY

Soybean lines lacking lipoxygenase (LOX) activity were compared with soybean lines having LOX activity for the ability to support growth and aflatoxin B1 production by the fungal seed pathogen Aspergillus flavus. Whole seeds, broken seeds, and heat-treated (autoclaved) whole seeds were compared. Broken seeds, irrespective of LOX presence, supported excellent fungal growth and the highest aflatoxin levels. Autoclaved whole seeds, with or without LOX, produced good fungal growth and aflatoxin levels approaching those of broken seeds. Whole soybean seeds supported sparse fungal growth and relatively low aflatoxin levels. There was no significant difference in aflatoxin production between whole soybean seeds either with or without LOX, although there did seem to be differences among the cultivars tested. The heat treatment eliminated LOX activity (in LOX+ lines), yet aflatoxin levels did not change substantially from the broken seed treatment. Broken soybean seeds possessed LOX activity (in LOX+ lines) and yet yielded the highest aflatoxin levels. The presence of active LOX did not seem to play the determinant role in the susceptibility of soybean seeds to fungal pathogens. Seed coat integrity and seed viability seem to be more important characteristics in soybean seed resistance to aflatoxin contamination. Soybean seeds lacking LOX seem safe from the threat of increased seed pathogen susceptibility.


1983 ◽  
Vol 46 (11) ◽  
pp. 940-942 ◽  
Author(s):  
LLOYD B. BULLERMAN

Growth and aflatoxin production by selected strains of Aspergillus parasiticus and Aspergillus flavus in the presence of potassium sorbate at 12°C were studied. Potassium sorbate at 0.05, 0.10 and 0.15% delayed or prevented spore germination and initiation of growth, and slowed growth of these organisms in yeast-extract sucrose broth at 12°C. Increasing concentrations of sorbate caused more variation in the amount of total mycelial growth and generally resulted in a decrease in total mycelial mass. Potassium sorbate also greatly reduced or prevented production of aflatoxin B1 by A. parasiticus and A. flavus for up to 70 d at 12°C. At 0.10 and 0.15% of sorbate, aflatoxin production was essentially eliminated. A 0.05% sorbate, aflatoxin production was greatly decreased in A. flavus over the control, but only slightly decreased in A. parasiticus.


2011 ◽  
Vol 35 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Rosane Tamara da Silva Medeiros ◽  
Edlayne Gonçalez ◽  
Roberto Carlos Felicio ◽  
Joana D'arc Felicio

The presence of mycotoxins as a result of fungal attack can occur before, after and during the harvest and storage operations on agricultural crops and food commodities. Considering the inhibitory property of essential plant oils on the mycelial development of fungi and the importance of Aspergillus flavus, the main producer of aflatoxins, this research was designed to evaluate the toxicity of essential oil from Pittosporum undulatum against A. flavus. The essential oils were obtained from P. undulatum leaves, collected in different months and analyzed by GC/MS. The oils were rich in hydrocarbon, monoterpenes and sesquiterpenes and it was observed a significant variation on the chemical composition of the essential oil of leaves at different months. Besides, the essential oils were tested against fungal growth and the results showed different spectrum of inhibition on A. flavus. However, the essential oils inhibited the aflatoxin B1 production.


1994 ◽  
Vol 51 (2) ◽  
pp. 369-373 ◽  
Author(s):  
H. Fonseca ◽  
C.R. Gallo ◽  
M.A. Calori-Domingues ◽  
E.M. Gloria ◽  
P.J. Approbatto ◽  
...  

The present experiment aimed to evaluate the effect of sodium ortho-phenylphenate (SOP) application to in-shell moist peanuts for the control of aflatoxin production. Previous studies showed the need to improve the SOP solution distribution on peanut pods to evaluate the product. Thus, in this experiment the place of the spray system was the bag filler pipe of the pre-cleaning machine in the warehouse. In the 1989 rainy season two lots of 120 bags of in-shell moist peanuts were sprayed with 0.5 and 1% SOP solutions and aflatoxin production was not controlled. In the dry season of 1989 and in the rainy season of 1990, in-shell moist peanuts were sprayed with 5% SOP solution. The coverage of pods with the solution was efficient, allowing a uniform distribution of SOP solution on the pods. The results showed that only the 5.0% concentration of SOP solution utilized controlled the external fungal growth when a naked eye observation was made, however did not control aflatoxin production when applied to in-shell moist peanuts, probably due to the internal presence of Aspergillus flavus and because the fungicide could not penetrate inside to reach the kernels.


2015 ◽  
Vol 3 (3) ◽  
pp. 374-379 ◽  
Author(s):  
Neveen Helmy Abou El-Soud ◽  
Mohamed Deabes ◽  
Lamia Abou El-Kassem ◽  
Mona Khalil

BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents.AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production.MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and analysed using gas chromatography (GC) and GC coupled with mass spectrometry (GC/MS). The essential oil was tested for its effects on Aspergillus flavus (A. flavus) mycelial growth and aflatoxin B1 production in Yeast Extract Sucrose (YES) growth media. Aflatoxin B1 production was determined by high performance liquid chromatography (HPLC).RESULTS: Nineteen compounds, representing 96.7% of the total oil were identified. The main components were as follows: linalool (48.4%), 1,8-cineol (12.2%), eugenol (6.6%), methyl cinnamate (6.2%), α-cubebene (5.7%), caryophyllene (2.5%), β-ocimene (2.1%) and α-farnesene (2.0%).The tested oil showed significant antifungal activity that was dependent on the used oil concentration. The complete inhibition of A. flavus growth was observed at 1000 ppm oil concentration, while marked inhibition of aflatoxin B1 production was observed at all oil concentrations tested (500, 750 and 1000 ppm).CONCLUSION: These results confirm the antifungal activities of O. basilicum L. oil and its potential use to cure mycotic infections and act as pharmaceutical preservative against A. flavus growth and aflatoxin B1 production.


Sign in / Sign up

Export Citation Format

Share Document