scholarly journals Entomopathogenic Fungi: Factors Involved in Successful Microbial Control of Insect Pests

2020 ◽  
Vol 17 (2) ◽  
pp. 74-83
Author(s):  
Ghulam Ali Bugti ◽  
Wang Bin ◽  
Shafique Ahmed Memo ◽  
Ghulam Khaliq ◽  
Muhammad Abuzar Jaf
2018 ◽  
Vol 17 ◽  
pp. 82-91 ◽  
Author(s):  
Dipak Khanal

Soil insect pests are the major productivity constrains of different crops among which white grubs (Coleoptera: Scarabaeidae), both adult and larval stages, are extremely destructive in nature. Laboratory studies were conducted to evaluate the virulence of an indigenous and a commercial strain of the entomopathogenic fungi, Metarhizium anisopliae (Metsch.) Sorokin, against white grubs species Chiloloba acuta by applying the dipping method at Entomology Division, NARC, Nepal. Third instars larvae of C. acuta were dipped in suspensions of indigenous and commercial strains (Pacer) of M. anisopliae at different concentrations ranging from 3.33×104 to 1.04×108 spores/ml for 3-5 seconds which resulted in 97.8% and 89% mortalities with the highest dose of 1.04×108 spores/ml 40 days after inoculation (DAI), respectively. The LC50 values for indigenous and commercial strain were 3.5×105 and 1.88×106 spores/ml, respectively, with the potency of 1:0.28 at 40 DAI. Bioassays were conducted in completely randomized design. From results it is concluded that the tested strains of entomopathogenic fungi have potential as microbial control agents in managing white grubs in laboratory and it is suggested to be tested under farmers field condition.


Author(s):  
Atef M M Sayed ◽  
Christopher A Dunlap

Abstract Six fungal isolates of Beauveria bassiana (Balsamo) Vuillemin and one isolate of Metarhizium anisopliae (Metschnikoff) Sorokin were isolated and evaluated for their pathogenicity to Icerya seychellarum (Westwood) and Aulacaspis tubercularis Newstead. There is a positive correlation between the concentration of the fungal blastospore concentrations and the percentage of mortality. Bio-efficacy increased significantly after inoculation with increasing concentration of blastospores and elapsed time up to 12 d after inoculation. The mortality of nymphs exposed to fungal isolates at various concentrations varied between 2.5 and 88.8%. Probit analysis of data at 95% confidence limits of LC50 and LT50s showed significant differences in the susceptibility of nymphs of I. seychellarum and A. tubercularis to the tested fungal isolates. The fungal isolates of Egy-6 and Egy-9 were the most effective against I. seychellarum and A. tubercularis, respectively. They had the lowest LC50 (4.20 × 105 and 5.71 × 103 blastospore ml−1) and LT50 (ranged from 4.61 to 9.79 and 4.84 to 8.71 d), respectively. The current study showed that all the fungal isolates yielded moderate mortality rates of nymphs and adult female populations of both the tested insect pests. To our knowledge, this is the first report of bio-efficacy of Beauveria and Metarhizium isolates against members of the Diaspidadae and Monophlebidae family insects. These results establish that the use of these native entomopathogenic fungi isolates of B. bassiana (Egy-3, Egy-4, Egy-6, Egy-7, Egy-9, and Egy-10) and M. anisopliae (Egy-5) could be considered for further development as microbial control agents of the mealybug and scale insects as a potential biological agent for use in an IPM program.


2012 ◽  
Vol 64 (1) ◽  
pp. 21-42 ◽  
Author(s):  
Ali Shahid ◽  
Qayyum Rao ◽  
Allah Bakhsh ◽  
Tayyab Husnain

Entomopathogenic fungi vary considerably in their mode of action and virulence. Successful infection depends primarily on the adherence and penetration ability of a fungus to the host integuments. A variety of extracellular enzymes is produced during the degradation of insect integument. The attempts to control insects have changed over time from chemicals to natural control methods. This is why the development of natural methods of insect control or biopesticides, is preferred. By the use of fungal entomopathogens, insect pests can be controlled. There is no doubt that insects have been used for many years, but their effective use in the field remains elusive. However, their additional role in nature has also been discovered. Comparison of entomopathogens with conventional chemical pesticides depends on their efficiency and cost. In addition to efficiency, there are advantages in using microbial control agents, such as human safety and other non-target organisms; pesticide residues are minimized in food and biodiversity increased in managed ecosystems. In the present review the pathogenicity and virulence of entomopathogenic fungi and their role as biological control agents using biotechnology will be discussed.


Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 341 ◽  
Author(s):  
Surendra K. Dara ◽  
Cristian Montalva ◽  
Marek Barta

The health of the forestlands of the world is impacted by a number of insect pests and some of them cause significant damage with serious economic and environmental implications. Whether it is damage of the North American cypress aphid in South America and Africa, or the destruction of maple trees in North America by the Asian long horned beetle, invasive forest pests are a major problem in many parts of the world. Several studies explored microbial control opportunities of invasive forest pests with entomopathogenic bacteria, fungi, and viruses, and some are successfully utilized as a part of integrated forest pest management programs around the world. This manuscript discusses some invasive pests and the status of their microbial control around the world with entomopathogenic fungi.


2022 ◽  
Vol 82 ◽  
Author(s):  
J. Iqbal ◽  
S. Ahmad ◽  
Q. Ali

Abstract Entomopathogenic fungi (EPF) now a possible safer microbial control measure that could be considered as a substitute for chemical control of insect pests. Three EPF viz., Metarihizium anisopliae, Isaria furnosoroseus and Beauveria bassiana were evaluated for their virulence against the grubs of Khapra beetle, Trogoderma granarium (Everts) under laboratory conditions. The isolates were applied by two methods viz., diet incorporation and an immersion method with 3rd instar 20 grubs of T. granarium for each. The virulence of EPF was determined using percent mortality. Significantly higher mortality was observed in M. anisopliae applied through immersion (98.33%) and diet incorporation (93.33%) methods followed by B. bassiana (90.83 and 85.83%, respectively). The mortality caused by I. furnosoroseus was statistically lower in immersion and diet incorporation methods i.e. 81.67 and 73.33%, respectively. Based on the immersion method, all EPF were studied for multiple conidial concentration i.e., 1×104, 1×105, 1×106, 1×107 and 1×108 under the same in-vitro conditions. All the isolates were pathogenic to grub of T. granarium at the highest conidial concentration. M. anisopliae was proved the most effective virulent resulting in 98.33% mortality of the pest with LT50 4.61 days at 1 × 108 conidial concentration followed by 90.83 and 81.67 percent mortality with 5.07 and 8.01 days LT50, in the application of B. bassiana and I. furnosoroseus, respectively. M. anisopliae showed higher efficacy and could be considered as promising EPF for the development of myco-insecticides against effective biocontrol of T. granarium.


2017 ◽  
Vol 6 (8) ◽  
pp. 5459
Author(s):  
Chandra Teja K. ◽  
Rahman S. J.

Entomopathogenic fungi like Beauveria bassiana, Metarhizium anisopliae and Lecanicillium lecanii are used in biological control of agricultural insect pests. Their specific mode of action makes them an effective alternative to the chemical Insecticides. Virulent strains of Entomopathogenic fungi are effectively formulated and used as bio-insecticides world-wide. Amenable and economical multiplication of a virulent strain in a large scale is important for them to be useful in the field. Culture media plays a major role in the large-scale multiplication of virulent strains of Entomopathogens. Different substrates and media components are being used for this purpose. Yet, each strain differs in its nutritional requirements for the maximum growth and hence it is necessary to standardize the right components and their optimum concentrations in the culture media for a given strain of Entomopathogen. In the current study, three different nitrogen sources and two different carbon sources were tried to standardize the mass multiplication media for seven test isolates of Entomopathogenic fungi. A study was also conducted to determine the ideal grain media for the optimum conidial yields of the test isolates. Yeast extract was found to be the best Nitrogen source for the isolates. The isolates tested, differed in their nutritional requirements and showed variation in the best nitrogen and carbon sources necessary for their growth. Variation was also found in the optimum concentration of both the ingredients for the growth and sporulation of the isolates. In the solid-state fermentation study, rice was found to be the best grain for the growth of most of the fungi followed by barley. The significance of such a study in the development of an effective Myco-insecticide is vital and can be successfully employed in agriculture is discussed.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 852
Author(s):  
Tárcio S. Santos ◽  
Tarcisio M. Silva ◽  
Juliana C. Cardoso ◽  
Ricardo L. C. de Albuquerque-Júnior ◽  
Aleksandra Zielinska ◽  
...  

Silver nanoparticles are widely used in the biomedical and agri-food fields due to their versatility. The use of biological methods for the synthesis of silver nanoparticles has increased considerably due to their feasibility and high biocompatibility. In general, microorganisms have been widely explored for the production of silver nanoparticles for several applications. The objective of this work was to evaluate the use of entomopathogenic fungi for the biological synthesis of silver nanoparticles, in comparison to the use of other filamentous fungi, and the possibility of using these nanoparticles as antimicrobial agents and for the control of insect pests. In addition, the in vitro methods commonly used to assess the toxicity of these materials are discussed. Several species of filamentous fungi are known to have the ability to form silver nanoparticles, but few studies have been conducted on the potential of entomopathogenic fungi to produce these materials. The investigation of the toxicity of silver nanoparticles is usually carried out in vitro through cytotoxicity/genotoxicity analyses, using well-established methodologies, such as MTT and comet assays, respectively. The use of silver nanoparticles obtained through entomopathogenic fungi against insects is mainly focused on mosquitoes that transmit diseases to humans, with satisfactory results regarding mortality estimates. Entomopathogenic fungi can be employed in the synthesis of silver nanoparticles for potential use in insect control, but there is a need to expand studies on toxicity so to enable their use also in insect control in agriculture.


Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 665 ◽  
Author(s):  
Charalampos Filippou ◽  
Inmaculada Garrido-Jurado ◽  
Nicolai Meyling ◽  
Enrique Quesada-Moraga ◽  
Robert Coutts ◽  
...  

The use of mycoviruses to manipulate the virulence of entomopathogenic fungi employed as biocontrol agents may lead to the development of novel methods to control attacks by insect pests. Such approaches are urgently required, as existing agrochemicals are being withdrawn from the market due to environmental and health concerns. The aim of this work is to investigate the presence and diversity of mycoviruses in large panels of entomopathogenic fungi, mostly from Spain and Denmark. In total, 151 isolates belonging to the genera Beauveria, Metarhizium, Lecanicillium, Purpureocillium, Isaria, and Paecilomyces were screened for the presence of dsRNA elements and 12 Spanish B. bassiana isolates were found to harbor mycoviruses. All identified mycoviruses belong to three previously characterised species, the officially recognised Beauveria bassiana victorivirus 1 (BbVV-1) and the proposed Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1); individual B. bassiana isolates may harbor up to three of these mycoviruses. Notably, these mycovirus species are under distinct selection pressures, while recombination of viral genomes increases population diversity. Phylogenetic analysis of the RNA-dependent RNA polymerase gene sequences revealed that the current population structure in Spain is potentially a result of both vertical and horizontal mycovirus transmission. Finally, pathogenicity experiments using the Mediterranean fruit fly Ceratitis capitata showed no direct correlation between the presence of any particular mycovirus and the virulence of the B. bassiana isolates, but illustrated potentially interesting isolates that exhibit relatively high virulence, which will be used in more detailed virulence experimentation in the future.


Sign in / Sign up

Export Citation Format

Share Document