scholarly journals A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium

2004 ◽  
Vol 10 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Jonathan E. Rubin ◽  
2003 ◽  
Vol 13 (06) ◽  
pp. 1529-1543 ◽  
Author(s):  
Juncheng Wei ◽  
Matthias Winter

We consider a nonlocal eigenvalue problem which arises in the study of stability of spike solutions for reaction–diffusion systems with fractional reaction rates such as the Sel'kov model, the Gray–Scott system, the hypercycle of Eigen and Schuster, angiogenesis, and the generalized Gierer–Meinhardt system. We give some sufficient and explicit conditions for stability by studying the corresponding nonlocal eigenvalue problem in a new range of parameters.


2011 ◽  
Vol 338 ◽  
pp. 467-472 ◽  
Author(s):  
Ji Duo Jin ◽  
Xiao Dong Yang ◽  
Yu Fei Zhang

The stability, natural characteristics and critical axial force of a supported beam are analyzed. The both ends of the beam are held by the pinned supports with rotational spring constraints. The eigenvalue problem of the beam with these boundary conditions is investigated firstly, and then, the stability of the beam is analyzed using the derived eigenfuntions. According to the analytical expression obtained, the effect of the spring constants on the critical values of the axial force is discussed.


2008 ◽  
Vol 18 (01) ◽  
pp. 219-225 ◽  
Author(s):  
DANIEL TURZÍK ◽  
MIROSLAVA DUBCOVÁ

We determine the essential spectrum of certain types of linear operators which arise in the study of the stability of steady state or traveling wave solutions in coupled map lattices. The basic tool is the Gelfand transformation which enables us to determine the essential spectrum completely.


2020 ◽  
Author(s):  
Ricardo Erazo Toscano ◽  
Remus Osan

1AbstractTraveling waves of electrical activity are ubiquitous in biological neuronal networks. Traveling waves in the brain are associated with sensory processing, phase coding, and sleep. The neuron and network parameters that determine traveling waves’ evolution are synaptic space constant, synaptic conductance, membrane time constant, and synaptic decay time constant. We used an abstract neuron model to investigate the propagation characteristics of traveling wave activity. We formulated a set of evolution equations based on the network connectivity parameters. We numerically investigated the stability of the traveling wave propagation with a series of perturbations with biological relevance.


1987 ◽  
Vol 127 ◽  
pp. 515-516
Author(s):  
P.L. Palmer ◽  
J. Papaloizou

We consider the linear stability of spherical stellar systems by solving the Vlasov and Poisson equations which yield a matrix eigenvalue problem to determine the growth rate. We consider this for purely growing modes in the limit of vanishing growth rate. We show that a large class of anisotropic models are unstable and derive growth rates for the particular example of generalized polytropic models. We present a simple method for testing the stability of general anisotropic models. Our anlysis shows that instability occurs even when the degree of anisotropy is very slight.


2020 ◽  
Vol 34 (29) ◽  
pp. 2050282
Author(s):  
Asıf Yokuş ◽  
Doğan Kaya

The traveling wave solutions of the combined Korteweg de Vries-modified Korteweg de Vries (cKdV-mKdV) equation and a complexly coupled KdV (CcKdV) equation are obtained by using the auto-Bäcklund Transformation Method (aBTM). To numerically approximate the exact solutions, the Finite Difference Method (FDM) is used. In addition, these exact traveling wave solutions and numerical solutions are compared by illustrating the tables and figures. Via the Fourier–von Neumann stability analysis, the stability of the FDM with the cKdV–mKdV equation is analyzed. The [Formula: see text] and [Formula: see text] norm errors are given for the numerical solutions. The 2D and 3D figures of the obtained solutions to these equations are plotted.


2019 ◽  
Vol 150 (1) ◽  
pp. 517-548
Author(s):  
Paul Cornwell ◽  
Christopher K. R. T. Jones

AbstractWe consider the stability of nonlinear travelling waves in a class of activator-inhibitor systems. The eigenvalue equation arising from linearizing about the wave is seen to preserve the manifold of Lagrangian planes for a nonstandard symplectic form. This allows us to define a Maslov index for the wave corresponding to the spatial evolution of the unstable bundle. We formulate the Evans function for the eigenvalue problem and show that the parity of the Maslov index determines the sign of the derivative of the Evans function at the origin. The connection between the Evans function and the Maslov index is established by a ‘detection form,’ which identifies conjugate points for the curve of Lagrangian planes.


Author(s):  
Baishun Lai

We examine the regularity of the extremal solution of the nonlinear eigenvalue problemon a general bounded domainΩin ℝN, with Navier boundary conditionu= Δuon ∂Ω. Firstly, we prove the extremal solution is smooth for anyp> 1 andN⩽ 4, which improves the result of Guo and Wei (Discrete Contin. Dynam. Syst.A34(2014), 2561–2580). Secondly, ifp= 3,N= 3, we prove that any radial weak solution of this nonlinear eigenvalue problem is smooth in the caseΩ= 𝔹, which completes the result of Dávilaet al. (Math. Annalen348(2009), 143–193). Finally, we also consider the stability of the entire solution of Δ2u= –l/upin ℝNwithu> 0.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
B. M. Shankar ◽  
Jai Kumar ◽  
I. S. Shivakumara

The stability of natural convection in a dielectric fluid-saturated vertical porous layer in the presence of a uniform horizontal AC electric field is investigated. The flow in the porous medium is governed by Brinkman–Wooding-extended-Darcy equation with fluid viscosity different from effective viscosity. The resulting generalized eigenvalue problem is solved numerically using the Chebyshev collocation method. The critical Grashof number Gc, the critical wave number ac, and the critical wave speed cc are computed for a wide range of Prandtl number Pr, Darcy number Da, the ratio of effective viscosity to the fluid viscosity Λ, and AC electric Rayleigh number Rea. Interestingly, the value of Prandtl number at which the transition from stationary to traveling-wave mode takes place is found to be independent of Rea. The interconnectedness of the Darcy number and the Prandtl number on the nature of modes of instability is clearly delineated and found that increasing in Da and Rea is to destabilize the system. The ratio of viscosities Λ shows stabilizing effect on the system at the stationary mode, but to the contrary, it exhibits a dual behavior once the instability is via traveling-wave mode. Besides, the value of Pr at which transition occurs from stationary to traveling-wave mode instability increases with decreasing Λ. The behavior of secondary flows is discussed in detail for values of physical parameters at which transition from stationary to traveling-wave mode takes place.


Sign in / Sign up

Export Citation Format

Share Document