scholarly journals Electron mobility dependence on neutron irradiation fluence in heavily irradiated silicon

2021 ◽  
Vol 61 (2) ◽  
Author(s):  
J.V. Vaitkus ◽  
A. Mekys ◽  
Š. Vaitekonis

An increase of neutron irradiation fluence caused a decrease of Si radiation detector efficiency that was exceptionally well seen at 1017 neutron/cm2 fluence when the observed I–V characteristic of p-n junction under forward bias and under reverse bias became similar. Therefore the investigation of free carrier mobility could be a key experiment to understand the change of heavily irradiated silicon. The electron mobility was investigated by magnetoresistance means in microstrip silicon samples at temperature range T = 200–276 K. The analysis included the free carrier scattering by phonons, ionized impurities, dipoles and clusters and a contribution of each process was found by fitting the mobility dependence on temperature. The analysis of experimental data clearly demonstrated that the applied model did not explain the mobility in the samples irradiated to the highest fluence. Therefore a new concept of carrier transport is needed, and, as a conclusion, it could be stated that Si irradiated above 1016 cm–2 fluence (and up to 1020 cm–2) is a disordered material with the clusters.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jonathan H. Gosling ◽  
Oleg Makarovsky ◽  
Feiran Wang ◽  
Nathan D. Cottam ◽  
Mark T. Greenaway ◽  
...  

AbstractPristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrier density. But linking these key transport parameters remains a challenging task for both theorists and experimentalists. Here, we report numerical and analytical models of carrier transport in graphene, which reveal a universal connection between graphene’s carrier mobility and the variation of its electrical conductivity with carrier density. Our model of graphene conductivity is based on a convolution of carrier density and its uncertainty, which is verified by numerical solution of the Boltzmann transport equation including the effects of charged impurity scattering and optical phonons on the carrier mobility. This model reproduces, explains, and unifies experimental mobility and conductivity data from a wide range of samples and provides a way to predict a priori all key transport parameters of graphene devices. Our results open a route for controlling the transport properties of graphene by doping and for engineering the properties of 2D materials and heterostructures.


2006 ◽  
Vol 910 ◽  
Author(s):  
Steve Reynolds

AbstractThe use of transient photoconductivity techniques in the investigation of carrier transport in microcrystalline silicon is described. Results are presented which highlight variations in transport parameters such as carrier mobility and density of states with structure composition. Hole mobility is significantly enhanced by crystalline content in the film of 10% or less. The density of states inferred from transport measurements parallel to and at right angles to the direction of film growth differ somewhat, suggesting that transport may be anisotropic.


2003 ◽  
Vol 125 (13) ◽  
pp. 3710-3711 ◽  
Author(s):  
Chung-chih Wu ◽  
Tsung-Li Liu ◽  
Wen-Yi Hung ◽  
Yu-Ting Lin ◽  
Ken-Tsung Wong ◽  
...  

2013 ◽  
Vol 3 (1) ◽  
pp. 348-352 ◽  
Author(s):  
R. K. Ahrenkiel ◽  
A. Feldman ◽  
J. Lehman ◽  
S. W. Johnston

2006 ◽  
Vol 20 (23) ◽  
pp. 3357-3364 ◽  
Author(s):  
TALAAT MOUSSA HAMMAD

Multilayer transparent conducting zinc oxide films have been prepared on boro-silicate substrates by the commercially sol gel dip coating process. Each layer was fired at 550°C in a conventional furnace for 15 min. The final coatings were then tempered under a flux of forming gas ( N 2/ H 2) at 400°C for 2 h. The coatings were characterized by surface stylus profiling and optical spectroscopy (UV-NIR). Results show that (1) ZnO films with electrical resistivity of 6×10-4 Ω· cm , free carrier mobility of approximately 77 cm 2/ V · s and free carrier density of approximately 6.14×1019 cm -3 are obtained for multilayers 310 nm and (2) the transmittance is approximately 60.4% and the reflectance is nearly 34.7% are obtained at a wavelength of 800 nm when the thickness of the ZnO multilayers is 310 nm. The crystal structure and grain orientation of ZnO films were determined by X-ray diffraction. SEM investigations revealed that the surface morphology of growing ZnO films on boro-silicate substrate is dominated by the smooth surface with a fine microstructure.


2020 ◽  
Vol 234 (4) ◽  
pp. 699-717
Author(s):  
James Hirst ◽  
Sönke Müller ◽  
Daniel Peeters ◽  
Alexander Sadlo ◽  
Lukas Mai ◽  
...  

AbstractThe temporal evolution of photogenerated carriers in CuWO4, CuO and WO3 thin films deposited via a direct chemical vapor deposition approach was studied using time-resolved microwave conductivity and terahertz spectroscopy to obtain the photocarrier lifetime, mobility and diffusion length. The carrier transport properties of the films prepared by varying the copper-to-tungsten stoichiometry were compared and the results related to the performance of the compositions built into respective photoelectrochemical cells. Superior carrier mobility was observed for CuWO4 under frontside illumination.


2004 ◽  
Vol 831 ◽  
Author(s):  
F. Carosella ◽  
M. Germain ◽  
J.-L. Farvacque

ABSTRACTThe aim of this contribution is to determine theoretically the maximum mobility that can be expected in AlGaN/GaN quantum wells as soon as the free carriers are only submitted to intrinsic scattering mechanisms associated with phonons and the carrier-carrier interaction. In our model, we consider that the carrier-carrier two bodies collisions do not constitute by themselves a relaxation mechanism since they conserve the momentum and the energy of the electron system. Thus, we assume that the free carriers act only through their contribution to the dynamical dielectric response of the material and, at least, through their collective behavior resulting into plasmons which, when damped, constitute now a real relaxation mechanism. The full scattering strength is connected with the imaginary part of the total reversed dielectric function including the lattice and the free carrier contributions. This approach automatically includes the scattering mechanisms associated with hybrid phonon/plasmon particles.


Sign in / Sign up

Export Citation Format

Share Document