scholarly journals A New Template of MIitsunobu Acylate Cleavable in Non-Alkaline Conditions

Heterocycles ◽  
2022 ◽  
Vol 104 (1) ◽  
pp. 140
Author(s):  
Kengo Shigetomi ◽  
Yoshimichi Sakakibara ◽  
Yusuke Sai ◽  
Yasumitsu Uraki ◽  
Makoto Ubukata
Keyword(s):  
2020 ◽  
Vol 8 (44) ◽  
pp. 23323-23329
Author(s):  
Jing Hu ◽  
Siwei Li ◽  
Yuzhi Li ◽  
Jing Wang ◽  
Yunchen Du ◽  
...  

Crystalline–amorphous Ni–Ni(OH)2 core–shell assembled nanosheets exhibit outstanding electrocatalytic activity and stability for hydrogen evolution under alkaline conditions.


2016 ◽  
Vol 44 (3) ◽  
pp. 461-474 ◽  
Author(s):  
J.B. Wehr ◽  
P.M. Kopittke ◽  
S.A. Dalzell ◽  
N.W. Menzies

1974 ◽  
Vol 76 (4) ◽  
pp. 789-800 ◽  
Author(s):  
Samuel F. Sisenwine ◽  
Ann L. Liu ◽  
Hazel B. Kimmel ◽  
Hans W. Ruelius

ABSTRACT The identification of 1β-hydroxynorgestrel among the urinary metabolites of dl-norgestrel and the facile transformation of this compound under mild alkaline conditions to a potentially oestrogenic phenol provide an experimental basis for the conclusion advanced by others that the oestrogens present in the urine of subjects treated with synthetic progestens are artifacts formed during analytical work-up. A method has been devised which eliminates 1-hydroxylated metabolites as potential sources of phenolic artifacts. This method is based on the reduction by NaBH4 of the 1-hydroxy-4-en-3-one grouping in the A ring thereby excluding the possibility of aromatization during later fractionation on a basic ion exchange resin that separates neutral from phenolic metabolites. In the urines of women treated with 14C-dl-nogestrel, only 0.17–0.27% of the dose is found to have phenolic properties when this method is used. Two of the phenolic metabolites, 18-homoethynyloestradiol and 16β-hydroxy-18-homoethynyloestradiol, are present in amounts smaller than 0.01 % of the dose. Without the reduction steps the percentages are noticeably higher, indicating artifact formation under alkaline conditions. Similar results were obtained with urines from African Green Monkeys (Cercopithecus Aethiops) that had been dosed with 14C-dl-norgestrel. Radiolabelled 18-homoethynyloestradiol and 16β-hydroxy-18-homoethynyloestradiol were isolated from monkey urine and their identity confirmed by gas chromatography-mass spectrometry.


2020 ◽  
Vol 21 (13) ◽  
pp. 1304-1315
Author(s):  
Junmei Zhou ◽  
Lianghong Yin ◽  
Chenbin Wu ◽  
Sijia Wu ◽  
Jidong Lu ◽  
...  

Objective: Alkaline Carboxymethyl Cellulase (CMCase) is an attractive enzyme for the textile, laundry, pulp, and paper industries; however, commercial preparations with sufficient activity at alkaline conditions are scarce. Methods: High CMCase-producing bacterial isolate, SX9-4, was screened out from soil bacteria, which was identified as Flavobacterium sp. on the basis of 16S rDNA sequencing. Results: The optimum pH and temperature for CMCase reaction were 8.0 and 55°C, respectively. Alkaline CMCase was stable over wide pH (3.0-10.6) and temperature (25-55°C) ranges. Enzyme activity was significantly inhibited by the bivalent cations Mn2+ and Cu2+, and was activated by Fe2+. To improve the alkaline CMCase production of SX9-4, fermentation parameters were selected through onefactor- at-a-time and further carried out by response surface methodologies based on a central composite design. Conclusion: High CMCase production (57.18 U/mL) was achieved under the optimal conditions: 10.53 g/L carboxymethylcellulose sodium, 7.74 g/L glucose, 13.71 g/L peptone, and 5.27 g/L ammonium oxalate.


2020 ◽  
Vol 16 (2) ◽  
pp. 135-144
Author(s):  
Ravneet K. Grewal ◽  
Baldeep Kaur ◽  
Gagandeep Kaur

Background: Amylases are the most widely used biocatalysts in starch saccharification and detergent industries. However, commercially available amylases have few limitations viz. limited activity at low or high pH and Ca2+ dependency. Objective: The quest for exploiting amylase for diverse applications to improve the industrial processes in terms of efficiency and feasibility led us to investigate the kinetics of amylase in the presence of metal ions as a function of pH. Methods: The crude extract from soil fungal isolate cultures is subjected to salt precipitation, dialysis and DEAE cellulose chromatography followed by amylase extraction and is incubated with divalent metal ions (i.e., Ca2+, Fe2+, Cu2+, and Hg2+); Michaelis-Menton constant (Km), and maximum reaction velocity (Vmax) are calculated by plotting the activity data obtained in the absence and presence of ions, as a function of substrate concentration in Lineweaver-Burk Plot. Results: Kinetic studies reveal that amylase is inhibited un-competitively at 5mM Cu2+ at pH 4.5 and 7.5, but non-competitively at pH 9.5. Non-competitive inhibition of amylase catalyzed starch hydrolysis is observed with 5mM Hg2+ at pH 9.5, which changes to mixed inhibition at pH 4.5 and 7.5. At pH 4.5, Ca2+ induces K- and V-type activation of amylase catalyzed starch hydrolysis; however, the enzyme has V-type activation at 7mM Ca2+ under alkaline conditions. Also, K- and V-type of activation of amylase is observed in the presence of 7mM Fe2+ at pH 4.5 and 9.5. Conclusion: These findings suggest that divalent ions modulation of amylase is pH dependent. Furthermore, a time-saving and cost-effective solution is proposed to overcome the challenges of the existing methodology of starch hydrolysis in starch and detergent industries.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 695 ◽  
Author(s):  
Mengjie Zhang ◽  
Wenchang Zhu ◽  
Xingzhe Yang ◽  
Meng Feng ◽  
Hongbin Feng

Few-layer exfoliated black phosphorus (Ex-BP) has attracted tremendous attention owing to its promising applications, including in electrocatalysis. However, it remains a challenge to directly use few-layer Ex-BP as oxygen-involved electrocatalyst because it is quite difficult to restrain structural degradation caused by spontaneous oxidation and keep it stable. Here, a robust carbon-stabilization strategy has been implemented to prepare carbon-coated Ex-BP/N-doped graphene nanosheet (Ex-BP/NGS@C) nanostructures at room temperature, which exhibit superior oxygen evolution reaction (OER) activity under alkaline conditions. Specifically, the as-synthesized Ex-BP/NGS@C hybrid presents a low overpotential of 257 mV at a current density of 10 mA cm−2 with a small Tafel slope of 52 mV dec−1 and shows high durability after long-term testing.


2020 ◽  
Vol 86 (1) ◽  
pp. 254-263
Author(s):  
Wei You ◽  
Kristina M. Hugar ◽  
Ryan C. Selhorst ◽  
Megan Treichel ◽  
Cheyenne R. Peltier ◽  
...  

2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


Sign in / Sign up

Export Citation Format

Share Document