A study on industrial-scale waste utilization in construction material production: the use of fly ash in GRP composite pipe

2020 ◽  
Vol 70 (340) ◽  
pp. 234
Author(s):  
A. Beycioğlu ◽  
H. Mis ◽  
E. D. Güner ◽  
H. Güner ◽  
N. Gökçe

This study presents a new approach to the utilization of industrial by-products in construction materials by using fly ash (FA) in the production of glass fiber-reinforced polyester (GRP) pipe. The FA was substituted by 10% and 20% (by weight of sand) in the mixtures to produce GRP pipes of 350 mm in diameter and 6 m in length for testing. Stiffness modulus (SM), axial tensile strength (ATS), and hoop tensile strength (HTS) tests were conducted on the produced GRP pipes and their elasticity modulus (EM) values were also calculated. To observe the microstructure of the GRP pipes and the interfacial transition zone of the layers, SEM and microscopic analyses were performed. Furthermore, a strain-corrosion test was conducted to obtain information about long term-performance of samples. The results showed that the FA-filled GRP pipes were found to meet the requirements of the related standards, and that the use of FA in the GRP pipe industry may be an important alternative approach to the utilization of industrial wastes via effective recycling mechanisms.

2020 ◽  
Vol 12 (15) ◽  
pp. 5987 ◽  
Author(s):  
Manfredi Saeli ◽  
Rosa Micale ◽  
Maria Paula Seabra ◽  
João A. Labrincha ◽  
Giada La Scalia

Construction is recognized as one of the most polluting and energy consuming industries worldwide, especially in developing countries. Therefore, Research and Development (R&D) of novel manufacturing technologies and green construction materials is becoming extremely compelling. This study aims at evaluating the reuse of various wastes, originated in the Kraft pulp-paper industry, as raw materials in the manufacture of novel geopolymeric (GP) mortars whose properties fundamentally depend on the target application (e.g., insulating panel, partition wall, structural element, furnishing, etc.). Five different wastes were reused as filler: Two typologies of Biomass Fly Ash, calcareous sludge, grits, and dregs. The produced samples were characterized and a multi criteria analysis, able to take into account not only the engineering properties, but also the environmental and economic aspects, has been implemented. The criteria weights were evaluated using the Delphi methodology. The fuzzy Topsis approach has been used to consider the intrinsic uncertainty related to unconventional materials, as the produced GP-mortars. The computational analysis showed that adding the considered industrial wastes as filler is strongly recommended to improve the performance of materials intended for structural applications in construction. The results revealed that the formulations containing 5 wt.% of calcareous sludge, grits, and dregs and the one containing 7.5 wt.% of calcareous sludge, grits, dregs, and Biomass Fly Ash-1 have emerged as the best alternatives. Furthermore, it resulted that the Biomass Fly Ash-2 negatively influences the structural performance and relative rank of the material. Finally, this case study clearly shows that the fuzzy Topsis multi-criteria analysis represents a valuable and easy tool to investigate construction materials (either traditional and unconventional) when an intrinsic uncertainty is related to the measurement of the quantitative and qualitative characteristics.


2017 ◽  
Vol 44 (3) ◽  
pp. 223-231 ◽  
Author(s):  
Tomi Kaakkurivaara ◽  
Heikki Korpunen

Increasing forest bioenergy utilization is increasing the need to discover more applications for fly ash to avoid dumping charges. Our study concentrates on defining the work phases of reconstruction work and estimation of construction costs for a method using biomass based fly ash. Cost calculations were carried out for two mixed structures of fly ash and aggregate, two uniform structures of fly ash, and a conventional aggregate structure, where construction material volumes were calculated per kilometre for each structure. Our study defined suitable machines and their productivity per hour for different work phases. Cost calculation equations were formed for the used machines and the transportation of construction materials. Our study showed that building a 250 mm thick uniform layer of fly ash was the best alternative for minimizing construction costs. However, building a 500 mm thick uniform layer of fly ash was the best alternative for minimizing dumping charges.


2021 ◽  
Vol 1202 (1) ◽  
pp. 012011
Author(s):  
Asres Simeneh ◽  
Alamrew ◽  
Konrad Mollenhauer

Abstract This research investigated the effect of mineral composition of aggregate on moisture sensitivity of bituminous mixtures and explored the benefits of hydrated lime filler and Wetfix BE surfactant additive to improve the resistance of the mix against moisture sensitivity. Basalt, quartzite, and limestone aggregates were selected based on their different mineralogy and 70 -100 penetration graded bitumen binders used during the study. Four laboratory tests the rolling bottle, shaking abrasion, pull-off tensile strength and indirect tensile strength tests were applied to study the effects of aggregate minerals and benefits of hydrated lime and Wetfix BE. Statistical analysis using Two-way ANOVA test conducted for each test to check the outcome significance. Results from each test revealed that mineral composition of aggregate have significant effects on the moisture resistance performance of bituminous mixtures and hydrated lime filler and Wetfix BE surfactant additives have advantages to improve the performance of bituminous mixture against moisture sensitivity and improves the long-term performance of asphalt mix.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6216
Author(s):  
Yassine El Mendili ◽  
Manal Bouasria ◽  
Mohammed-Hichem Benzaama ◽  
Fouzia Khadraoui ◽  
Malo Le Guern ◽  
...  

The French gravel industry produces approximatively 6.5 million tons of gravel wash mud each year. This material offers very promising properties which require an in-depth characterization study before its use as a construction material, otherwise it is removed from value cycles by disposal in landfills. We examined the suitability of gravel wash mud and seashells, with fly ash as a binder, as an unfired earth construction material. Thermal and mechanical characterizations of the smart mixture composed of gravel wash mud, Crepidula fornicata shells and fly ash are performed. The new specimens exhibit high compressive strengths compared to usual earth construction materials, which appears as a good opportunity for a reduction in the thickness of walls. The use of fly ash and Crepidula shells in addition to gravel wash mud provides high silica and calcium contents, which both react with clay, leading to the formation of tobermorite and Al-tobermorite as a result of a pozzolanic reaction. Considering the reduction in porosity and improvements in strength, these new materials are good candidates to contribute significantly to the Sustainable Development Goals (SDGs) and reduce carbon emissions.


2019 ◽  
Vol 3 ◽  
pp. 84-90 ◽  
Author(s):  
Sergio H.P. Cavalaro ◽  
Ana Blanco ◽  
Ricardo Pieralisi

In the construction industry, the design of dimensions and material properties is generally separated from the design of material composition and of the production processes used. Such divide is enabled by robust construction materials (like concrete) little affected by production processes if minimum precautionary measures are in place. The same does not hold true for special concrete types; whose higher sensibility compels a shift towards more comprehensive approaches that assimilate the production process in a holistic design. The design driven by integrated numerical simulations encompassing from production to the long-term performance is already ordinary in the manufacturing of plastic and metallic parts. Nevertheless, it remains an alien to the construction industry. The objective of this paper is to review existing studies that might underpin this holistic design approach in construction and show some of its capabilities. Advanced modelling strategies available to simulate the behaviour from the fresh- to the hardened-state are discussed for the cases of pervious concrete and fibre reinforced concrete. This approach provides a deeper insight about the material behaviour and aids to a new level of numerical optimisation of their compositions and production processes, unlocking a potential transformation of the modus operandi of the construction industry.


2011 ◽  
Vol 94-96 ◽  
pp. 1573-1576 ◽  
Author(s):  
Jian Wei Huang

This paper presents calibration of service temperature on the prediction of long-term performance of GFRP bar in reinforced concrete structures. Two approaches, based on monthly average temperature and yearly average temperature are proposed to simulate the real service condition on the RC structure for the study on long-term performance. A design example for the comparison of results by the two approaches is presented.


Author(s):  
Ayub Elahi ◽  
Atizaz Ali

Concrete is a versatile and most prevalent construction material. Its long-term performance depends on its interactions with the surrounding environment. The standards limit the ratio of the clay in aggregates due to its harmful effect on the concrete properties. This research paper presents the effect of different levels of clay addition on the concrete properties. Various levels of clay addition for different mixes were used in this experimental study. The effect of clay addition on workability, compressive strengths permeability and acid attack of concrete mixes was investigated. It has been seen that workability decreased by increasing the clay content to the mix. A drop in compressive strength of concrete up to 12% was observed by adding clay as compared with that of control samples. An adverse effect on resistance to permeability and acid attack of concrete was noted by increasing the clay content.


2006 ◽  
Vol 302-303 ◽  
pp. 98-104
Author(s):  
Ming Tang ◽  
Xiao Li

The slag-alkali is used to activate the activity of higher calsium fly ash. By the designs of the mixture ratio and the quadratic regression orthogonal design, the best combination is sought out. Several mixture factors which affect the rule of the concrete material properties and long term performance are researched. The mathematic models which are set up by the mixture ratio design with the quadralic regression orthogonal design can be effective. The precision is high. The strength of the concrete of slag-alkali fly ash was still increasing after 8 year. The dispersion degree of those specimens is small. The SEM photo of cracked specimen and early concrete specimen shows the surface of fly ash in 7 days concrete is slick and that in 8 years old specimen has been enwrapped tightly by much hydrate plant.


Sign in / Sign up

Export Citation Format

Share Document