scholarly journals Application of Geophysical Technique in the Coal Mining

2015 ◽  
Vol 11 (7) ◽  
pp. 11
Author(s):  
Lei Yue

Although coal is one of the most prevalent energy resources in the world, coal production has been a high risk industry due to its frequent accidents, especially in the developing nations. As well known, the main reason for that problem is that the potential disaster sources are not prospected before coal mining. Hence, it is very necessary to be advanced prospecting before the coal mining. Usually, the work of advanced prospecting can be done by the geophysical methods. According to the difference of disasters source physical characters, different geophysical methods can be employed. Because of different geophysical methods owning their advantages and disadvantages, this paper provides a general introduction to the most important methods used in the coal mining. These methods represent a primary tool for advanced prospecting to the disaster source. Although their main application is in prospecting disaster source in the coal mining, the methods are also used in other fields, for example, railway tunnel, environmental engineering and city construction. Consequently, geophysical method is of importance not only to geophysicists but also to geologists, engineers and archaeologists. The paper only covers the basic physical principles, methodology, and application fields of the various survey methods

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Pengye Guo ◽  
Yuanchan Luo ◽  
Ju Wu ◽  
Hui Wu

AbstractDue to the increasing environmental pollution of un-degradable plastics and the consumption of non-renewable resources, more attention has been attracted by new bio-degradable/based polymers produced from renewable resources. Polylactic acid (PLA) is one of the most representative bio-based materials, with obvious advantages and disadvantages, and has a wide range of applications in industry, medicine, and research. By copolymerizing to make up for its deficiencies, the obtained copolymers have more excellent properties. The development of a one-step microbial metabolism production process of the lactate (LA)-based copolymers overcomes the inherent shortcomings in the traditional chemical synthesis process. The most common lactate-based copolymer is poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], within which the difference of LA monomer fraction will cause the change in the material properties. It is necessary to regulate LA monomer fraction by appropriate methods. Based on synthetic biology and systems metabolic engineering, this review mainly focus on how did the different production strategies (such as enzyme engineering, fermentation engineering, etc.) of P(LA-co-3HB) optimize the chassis cells to efficiently produce it. In addition, the metabolic engineering strategies of some other lactate-based copolymers are also introduced in this article. These studies would facilitate to expand the application fields of the corresponding materials.


Author(s):  
V. Suganya ◽  
V. Anuradha

Encapsulation is a process of enclosing the substances within an inert material which protects from environment as well as control drug release. Recently, two type of encapsulation has been performed in several research. Nanoencapsulation is the coating of various substances within another material at sizes on the nano scale. Microencapsulation is similar to nanoencapsulation aside from it involving larger particles and having been done for a greater period of time than nanoencapsulation. Encapsulation is a new technology that has wide applications in pharmaceutical industries, agrochemical, food industries and cosmetics. In this review, the difference between micro and nano encapsulation has been explained. This article gives an overview of different methods and reason for encapsulation. The advantages and disadvantages of micro and nano encapsulation technology were also clearly mentioned in this paper.


2021 ◽  
Vol 11 (6) ◽  
pp. 2448
Author(s):  
Alex Sendrós ◽  
Aritz Urruela ◽  
Mahjoub Himi ◽  
Carlos Alonso ◽  
Raúl Lovera ◽  
...  

Water percolation through infiltration ponds is creating significant synergies for the broad adoption of water reuse as an additional non-conventional water supply. Despite the apparent simplicity of the soil aquifer treatment (SAT) approaches, the complexity of site-specific hydrogeological conditions and the processes occurring at various scales require an exhaustive understanding of the system’s response. The non-saturated zone and underlying aquifers cannot be considered as a black box, nor accept its characterization from few boreholes not well distributed over the area to be investigated. Electrical resistivity tomography (ERT) is a non-invasive technology, highly responsive to geological heterogeneities that has demonstrated useful to provide the detailed subsurface information required for groundwater modeling. The relationships between the electrical resistivity of the alluvial sediments and the bedrock and the difference in salinity of groundwater highlight the potential of geophysical methods over other more costly subsurface exploration techniques. The results of our research show that ERT coupled with implicit modeling tools provides information that can significantly help to identify aquifer geometry and characterize the saltwater intrusion of shallow alluvial aquifers. The proposed approaches could improve the reliability of groundwater models and the commitment of stakeholders to the benefits of SAT procedures.


KYAMC Journal ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 21-24
Author(s):  
Md Abdus Salam ◽  
Md Mahbub Alam ◽  
Rezwan Ahmed ◽  
Md Sultan Mahmud

Background: Tonsillectomy is one of the most common surgical procedures performed worldwide by otorhinolaryngologists for different indications. Tonsillectomy is often performed as day-case surgery, which increases the demands of a satisfactory postoperative pain control and a low risk of early postoperative bleeding. Objective: The aim of the study was to compare the Monopolar diathermy and Dissection methods of tonsillectomy and evaluate their advantages and disadvantages during surgery, convalescence. Materials and Methods: Two hundred children were recruited for this study during the period of five years from January, 2014 to December, 2018 at Otolaryngology department of Khwaja Yunus Ali Medical College and Hospital (KYAMCH). Subjects between the age of 5 and 25 years listed for tonsillectomy were included. Subjects were recommended not to have aspirin within the 2 weeks before surgery. Results: The mean duration of operation was found 10.6±0.4 minutes in group A and 17.0±0.7 minutes in group B. The difference was statistically significant (p<0.05) between two groups. At 1st day, 11(11.0%) patients had throat pain in group A and 23(23.0%) in group B. At 2nd day, 14(14.0%) patients had throat pain in group A and 25(25.0%) in group B. Which were statistically significant (p<0.05) between two groups. Conclusion: The monopolar diathermy tonsillectomy appears to cause less bleeding, postoperative pain and less time consuming in compare with the dissection tonsillectomy although patients experience slightly more pain than dissection Method. KYAMC Journal Vol. 10, No.-1, April 2019, Page 21-24


2021 ◽  
Author(s):  
Enzo Rizzo ◽  
Luigi Capozzoli ◽  
Gregory De Martino ◽  
Giacomo Fornasari ◽  
Valeria Giampaolo

&lt;p&gt;Carbonate aquifers in karst systems are very important water reservoir and are recognized as the most difficult to characterize. The purpose of this article is to present a project aimed to understand the circulation of fluids in carbonate reservoirs through innovative hydrogeophysical methodologies both in the laboratory and in the field. The test site is located in the Castel di Lepre karst system, which is disposed in the Mezo-Cenozoic carbonate substratum of the Monti della Maddalena ridge (Southern Appenines). In the karst area are located several caves, but the presence of an artificial tunnel (disused railway tunnel) could give the opportunity to characterize the whole area and the fluid circulation by multisensors geophysical sensors installed inside the karst aquifer. This natural laboratory permits to define an Applied Geophysics strategy developing several main topics from an engineering to hydrogeological point of view. Firstly, the geophysical investigations conducted, without altering the structure and in a fast manner, obtains important information concerning the construction of the tunnel, and the interaction between the infrastructure and surrounding rock, in that area that we define infrastructural critical zone. The study conducted aims to highlight the potential and any limitations of the use of geophysical techniques applied to infrastructures, emphasizing the emerging role of urban geophysics for the importance and topicality of its contents as well as the important innovations that the use of these techniques they can contribute to the hazardous processes. Secondly, the geophysical methods are used as a tool to characterize the fluid circulation by hydrogeophysal sensors installed inside the karst aquifer. The hydrogeophysics arose as an interdisciplinary field that focuses on the improved understanding of hydrological processes through geophysical observation. These approaches aimed at mitigating the detrimental effects of environmental problems.&lt;/p&gt;


Author(s):  
Khairina Hazrati ◽  
Ani Minarni ◽  
W. Rajagukguk

This study aims to determine how the difference between mathematical connections and self-efficacy between students who are given a realistic mathematics approach with an inquiry approach at Senior High School  2 Tanjung Morawa. The sample used in this study was Senior High School  2 Tanjung Morawa. With the method of collecting literature study data. The method used is literature study. The results of this study indicate that the overall approach to mathematics is realistic and inquiry, each of which has advantages and disadvantages, but in this study a good approach to use in students' ability to solve math problems is the inquiry approach, because with the inquiry approach students can be more active, and have ideas in solving math problems.


2021 ◽  
Vol 25 (1) ◽  
pp. 115-122
Author(s):  
Shuilin Wang ◽  
SongYong Liu ◽  
Fanping Meng

The traditional research method of fault diagnosis mechanism has poor stability, which leads to the difference of fault diagnosis and location results. Therefore, under the complex geological environment, a new research method of fault diagnosis mechanism of gear and bearing for coal mining equipment is proposed. This method calculates gears and bearings’ yield strength by analyzing coal mining equipment’s bearing capacity elasticity. According to the fitting degree, the equipment sample’s projection space is confirmed, the fault features of gear and bearing are extracted by segmentation algorithm, the optimal fitness is set by positioning algorithm, the location of fault center is obtained, and the fault mechanism diagnosis is studied. Experimental results show that compared with the traditional method, the proposed method is more stable, and the difference in fault diagnosis results is minimal. It can be seen that this method is more suitable for fault diagnosis of coal mining equipment.


2021 ◽  
Vol 336 ◽  
pp. 05009
Author(s):  
Junrui Yang ◽  
Lin Xu

Aiming at the shortcomings of the traditional "support-confidence" association rules mining framework and the problems of mining negative association rules, the concept of interestingness measure is introduced. Analyzed the advantages and disadvantages of some commonly used interestingness measures at present, and combined the cosine measure on the basis of the interestingness measure model based on the difference idea, and proposed a new interestingness measure model. The interestingness measure can effectively express the relationship between the antecedent and the subsequent part of the rule. According to this model, an association rules mining algorithm based on the interestingness measure fusion model is proposed to improve the accuracy of mining. Experiments show that the algorithm has better performance and can effectively help mining positive and negative association rules.


2021 ◽  
Vol 11 ◽  
Author(s):  
Henriette L. Möllmann ◽  
Laura Apeltrath ◽  
Nadia Karnatz ◽  
Max Wilkat ◽  
Erik Riedel ◽  
...  

ObjectivesThis retrospective study compared two mandibular reconstruction procedures—conventional reconstruction plates (CR) and patient-specific implants (PSI)—and evaluated their accuracy of reconstruction and clinical outcome.MethodsOverall, 94 patients had undergone mandibular reconstruction with CR (n = 48) and PSI (n = 46). Six detectable and replicable anatomical reference points, identified via computer tomography, were used for defining the mandibular dimensions. The accuracy of reconstruction was assessed using pre- and postoperative differences.ResultsIn the CR group, the largest difference was at the lateral point of the condyle mandibulae (D2) -1.56 mm (SD = 3.8). In the PSI group, the largest difference between preoperative and postoperative measurement was shown at the processus coronoid (D5) with +1.86 mm (SD = 6.0). Significant differences within the groups in pre- and postoperative measurements were identified at the gonion (D6) [t(56) = -2.217; p = .031 &lt;.05]. In the CR group, the difference was 1.5 (SD = 3.9) and in the PSI group -1.04 (SD = 4.9). CR did not demonstrate a higher risk of plate fractures and post-operative complications compared to PSI.ConclusionFor reconstructing mandibular defects, CR and PSI are eligible. In each case, the advantages and disadvantages of these approaches must be assessed. The functional and esthetic outcome of mandibular reconstruction significantly improves with the experience of the surgeon in conducting microvascular grafts and familiarity with computer-assisted surgery. Interoperator variability can be reduced, and training of younger surgeons involved in planning can be reaching better outcomes in the future.


2021 ◽  
pp. 1-18
Author(s):  
Masatoshi Arai ◽  
Ken H. Andersen ◽  
Dimitri N. Argyriou ◽  
Werner Schweika ◽  
Luca Zanini ◽  
...  

The general performance of diffractometers at the first long pulse spallation source ESS, is compared with their counterparts at J-PARC, a short pulse spallation source. The difference in the inherent pulse structure of these neutron sources presents opportunities for new concepts for instrumentation, where performance does not scale simply with source power. The article describes advantages and disadvantages of those diffractometers, adapting to the very different source characteristics. We find that the two sources offer comparable performance in flux and resolution when operating in high-resolution mode. ESS offers significant advantages in tunability and flexibility, notably in the ability to relax resolution in order to increase flux for a given experiment. The slow repetition rate of ESS favors long instruments. On the other hand, J-PARC instruments perform very well in spite of the lower source power and allow better access to epithermal neutrons, of particular interest for PDF analysis of diffraction data.


Sign in / Sign up

Export Citation Format

Share Document