MAXIMIZING RESTORATION SUCCESS WHEN THE GOOD GROUND IS GONE

2017 ◽  
Vol 12 (3) ◽  
pp. 115-123
Author(s):  
Alex Zimmerman

INTRODUCTION “The good ground is gone” often refers to the challenging nature of construction sites these days. Building on steeper slopes and within tighter boundaries while accelerating construction schedules is adding to the challenge of construction managers. Often the revegetation and restoration is unfortunately not planned or timed for successful long-term vegetation success. Site soil conditions are frequently overlooked and the timing necessary for seed germination, expression, and establishment are rarely factors in determining the schedule of seeding applications for optimum results. All too often less than desired results or failure is the accepted outcome. This will increase the future maintenance costs and encourage the repeated “finger pointing” while seeking to blame one cause or another. Typically, this often-repeated process fails to address the fundamental causes and thereby rarely fixes the problems moving forward. In an effort to break out of this all too often repeated cycle, let's break down the principle challenges and explore options for successful restoration of challenging sites. Successful, long-term revegetation starts with the soil. Without quality soil that takes years to accumulate naturally, revegetation efforts regularly fail or the outcomes are less than ideal. During construction, mining, and general land disturbing activities the soil will be degraded even while practicing the best topsoil harvesting and stock-piling management practices. Many areas where vegetation is desired are essentially mineral without any organic matter or biological activity. When available, stockpiled topsoil will also degrade; the environment within the pile will create conditions that microbes, essential for plant health, will be negatively affected. The longer the stripped soils are stockpiled, the more living organisms are lost. Recommendations and even requirements for limiting the depth of the pile to reduce the loss of beneficial microbes is rarely possible given the tight boundaries of project limits facing site operators. When the stockpile depth is able to be minimized, the pile must also be turned regularly to reduce the loss of the essential nutrient cycling microbiome present in healthy soils.

2008 ◽  
Vol 56 (3) ◽  
pp. 363-370 ◽  
Author(s):  
M. El-Fouly ◽  
M. Shaaban ◽  
T. El-Khadraa

A study was conducted over 15 years in apple, peach, pear, citrus, grapevine and olive orchards in different locations in Syria. The study aimed at monitoring and evaluating the long-term nutrient behaviour in plants and soil in order to suggest measures for nutrient management improvement. Leaf and soil samples were collected in the years 1982, 1987, 1990 and 1997. The soils were characterized by high pH values, high CaCO 3 and low to medium organic matter contents. Due to the unfavourable soil conditions and ill-chosen fertilizer use, the nutrient balance in the plant tissues was disturbed. To correct the situation, the application of improved nutrient management practices was suggested.


Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 57
Author(s):  
Ioanna Panagea ◽  
Jan Diels ◽  
Guido Wyseure

Long-term agricultural practices have been shown to affect soil hydro-physical properties in multiple ways. They affect the stability and distribution of soil aggregates leading to changes in water retention, bulk density, hydraulic conductivity, and porosity. Aggregate stability is an indicator of the resilience of aggregates to external forces. Unstable aggregates can change rapidly under different land management practices and meteorological conditions. Μacro-aggregates (>250 μm) are formed more rapidly and are often more sensitive to management changes. Here, four different long-term experiments, run by the SoilCare Horizon 2020 Project partners, were sampled and analyzed, in order to evaluate the impact of different agricultural management practices in the water stability of soil aggregates and the fractions distribution. Different experiments selected, include control-conventional treatment and different treatments, which are considered soil improving. The treatments are about soil cultivation (conventional ploughing-control, zero tillage, minimum tillage, strip tillage, shallow tillage) and organic input (mineral fertilization-control, residue incorporation, farmyard manure) and are selected in areas with different climatic and soil conditions. Initial results indicate that treatments with less soil disturbance present more water stable aggregates (WSA) >250 μm and higher mean weight diameters (MWD), as well as the same trend following the treatments with increased organic input. According to Tukey’s Honest Significance test (p < 0.05), management practices are shown to have a significant impact on the WSA and MWD in most cases, but not all similar treatments in the different areas present the same results. The large macro-aggregates (>2 mm) seem to be greatly sensitive to soil cultivation, whereas the results for the small macro-aggregates (250 μm–2 mm) are controversial among the different tillage experiments. The different organic inputs seems to affect more the small macro-aggregates than the larger. The initial results indicate that the shifts in the soil structure cannot only be justified by the different management practices. The interrelationships and potential links with other soil properties like texture, bulk density, particulate organic matter and climate will be taken into account in further steps in order to understand the mechanisms behind the aggregation shifts.


1995 ◽  
Vol 35 (7) ◽  
pp. 929 ◽  
Author(s):  
K Paustian ◽  
ET Elliott ◽  
HP Collins ◽  
CV Cole ◽  
EA Paul

Soils contain a large proportion of the carbon (C) in the terrestrial biosphere, yet the role of soils as a sink or a source of net atmospheric C flux is uncertain. In agricultural systems, soil C is highly influenced by management practices and there is considerable interest in adapting management systems to promote soil C sequestration, thereby helping to mitigate atmospheric CO2 increases. Long-term field experimental sites represent a unique source of information on soil C dynamics, and networks of such sites provide a key ingredient for making large-scale assessments of soil C change across ranges in climate and soil conditions and management regimes. Currently, there are collaborative efforts to develop such site networks in Australia, Europe, and North America. A network of long-term experiments in North America was established to provide baseline information on the effects of management (i.e. tillage, crop rotations, fertilisation, organic amendments) on soil organic matter. Historical data on soils, primary productivity, climate, and management were synthesised by scientists from the individual field sites, representing a total of 35 long-term field experiments. An additional cross-site soil sampling campaign was carried out to provide uniform comparisons of soil C and nitrogen (N), both within and across sites. Long-term field experiments are a principle component necessary for regional assessments of soil C dynamics. We describe a general methodology for combining long-term data with process-oriented simulation models and regional-level, spatially resolved databases. Such analyses are needed to assess past and present changes in soil C at regional to global scales and to make projections of the potential impacts of changes in climate, CO2, and landuse patterns on soil C in agroecosystems.


Long-term experience of application of a method of electric heating by heating wires of the monolithic concrete and reinforced concrete structures erected in winter conditions is analyzed. This method, developed by the author of the article, took a dominant position on the construction sites due to the simplicity and efficiency in comparison with the mass applied in those years, the method of electric heating of concrete with steel round and strip electrodes. The data on labor intensity, material and energy costs in comparison with the method of rod electric heating are presented. Step-by-step technological operations on preparatory works and electric heating of monolithic structures with the use of extensive hands-on material, which formed the basis for the development of technological regulations, supplemented by a number of new proposals to improve the technology of works, are concretized. In order to work out the optimal mode of heat treatment, the studies of the concrete thermal conductivity factor in the process of its heating and strength development were carried out. The method for calculation of the basic parameters of concrete electric heating is presented. For simplification of calculations, for a wide contingent of masters, superintendents and technical personnel, the nomogram , making it possible with sufficient accuracy under the construction conditions to calculate the necessary heating parameters, was developed. The necessity of grounding the heating wire remaining in the concrete to reduce the harmful effect of magnetic radiation from various appliances and household appliances on the human body is noted.


2018 ◽  
Vol 36 (1) ◽  
pp. 76-85 ◽  
Author(s):  
Kristen E. Dybala ◽  
Andrew Engilis ◽  
John A. Trochet ◽  
Irene E. Engilis ◽  
Melanie L. Truan

2006 ◽  
Vol 16 (3) ◽  
pp. 408-412 ◽  
Author(s):  
Nicolas Tremblay ◽  
Carl Bélec

Weather is the primary driver of both plant growth and soil conditions. As a consequence of unpredictable weather effects on crop requirements, more inputs are being applied as an insurance policy. Best management practices (BMPs) are therefore about using minimal input for maximal return in a context of unpredictable weather events. This paper proposes a set of complementary actions and tools as BMP for nitrogen (N) fertilization of vegetable crops: 1) planning from an N budget, 2) reference plot establishment, and 3) crop sensing prior to in-season N application based on a saturation index related to N requirement.


1986 ◽  
Vol 18 (4-5) ◽  
pp. 53-61 ◽  
Author(s):  
P. B. Birch ◽  
G. G. Forbes ◽  
N. J. Schofield

Early results from monitoring runoff suggest that the programme to reduce application of superphosphate to farmlands in surrounding catchments has been successful in reducing input of phosphorus to the eutrophic Peel-Harvey estuary. In the estuary this phosphorus fertilizes algae which grow in abundance and accumulate and pollute once clean beaches. The success of the programme has been judged from application of an empirical statistical model, which was derived from 6 years of data from the Harvey Estuary catchment prior to a major change in fertilizer practices in 1984. The model relates concentration of phosphorus with rate of flow and time of year. High phosphorus concentrations were associated with high flow rates and with flows early in the high runoff season (May-July). The model predicted that the distribution of flows in 1984 should have resulted in a flow-weighted concentration of phosphorus near the long-term average; the observed concentration was 25% below the long-term average. This means that the amount of phosphorus discharged into the Harvey Estuary could have been about 2 5% less than expected from the volume of runoff which occurred. However several more years of data are required to confirm this trend.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 291
Author(s):  
Ramón Bienes ◽  
Maria Jose Marques ◽  
Blanca Sastre ◽  
Andrés García-Díaz ◽  
Iris Esparza ◽  
...  

Long-term field trials are essential for monitoring the effects of sustainable land management strategies for adaptation and mitigation to climate change. The influence of more than thirty years of different management is analyzed on extensive crops under three tillage systems, conventional tillage (CT), minimum tillage (MT), and no-tillage (NT), and with two crop rotations, monoculture winter-wheat (Triticum aestivum L.) and wheat-vetch (Triticum aestivum L.-Vicia sativa L.), widely present in the center of Spain. The soil under NT experienced the largest change in organic carbon (SOC) sequestration, macroaggregate stability, and bulk density. In the MT and NT treatments, SOC content was still increasing after 32 years, being 26.5 and 32.2 Mg ha−1, respectively, compared to 20.8 Mg ha−1 in CT. The SOC stratification (ratio of SOC at the topsoil/SOC at the layer underneath), an indicator of soil conservation, increased with decreasing tillage intensity (2.32, 1.36, and 1.01 for NT, MT, and CT respectively). Tillage intensity affected the majority of soil parameters, except the water stable aggregates, infiltration, and porosity. The NT treatment increased available water, but only in monocropping. More water was retained at the permanent wilting point in NT treatments, which can be a disadvantage in dry periods of these edaphoclimatic conditions.


Sign in / Sign up

Export Citation Format

Share Document