scholarly journals Comparative Analysis of Green Roof Guidelines and Standards In Europe and North America

2011 ◽  
Vol 6 (2) ◽  
pp. 170-191 ◽  
Author(s):  
Bruce Dvorak

The German FLL Guidelines for green roofs are designed to inform about state-of-the-art performance expectations for green roofs. North America is experiencing steady growth in the green roof market and has no single-source set of standards or guidelines; therefore there is a need to identify what type of guidance may be lacking. Seven domains of knowledge from the FLL Guidelines are compared to similar areas of content in North American documents. It was found that although there are several North American green roof guidelines in use, compared to the FLL Guidelines there are areas where knowledge is lacking: guidance for compatibility of system components, slope application, filter fabrics, root barriers, surface and subsurface drainage, growth media, and erosion control, as well as standards or postconstruction testing requirements for fabrics, bulk density of growth media, root barrier performance, drainage media, and growth media. A case study of the Chicago City Hall green roof examines its content compliance with FLL performance standards. Recommendations for further advancement of North American guidelines include the need for more collaborative research and development in efforts to advance existing and new guidelines across ecoregions.

2010 ◽  
Vol 5 (3) ◽  
pp. 50-68 ◽  
Author(s):  
Anne Altor

Green roof technology and implementation are taking root in North America at an accelerating pace. Growing recognition of the benefits of green roofs and increasing interest in green infrastructure are leading to expansion of green roof technologies that have been in use for decades in Europe and elsewhere. While some regions have adopted the use of green roofs on a large scale, other areas are warming up to the concept more slowly. Large-scale implementation of green roofs has not yet occurred in Indiana, but a number of exemplary projects have been constructed, and there are signs that interest in the technology is increasing in the state. The purpose of this article is to provide an overview of green roof technology, analyze selected green roofs in Indiana, explore trends in the state, and address issues for future development of green roof technology in the region. A variety of green roofs were investigated throughout the state. Discussions were held with individuals involved in each project to obtain technical and logistical details of green roof design, installation, and performance.


2021 ◽  
Vol 1203 (2) ◽  
pp. 022124
Author(s):  
Zuzana Miňová ◽  
Pavol Purcz ◽  
Lukáš Takal

Abstract The water storage capacity of a green roof forms several benefits for the building and its environment. The hydrologic performance is traditionally expressed by the runou coefficient, according to international guidelines and standards. The runoff coefficient is a dimensionless coefficient relating the amount of runoff to the amount of precipitation received. It is a larger value for areas with low infiltration and high runoff (pavement, steep gradient), and lower for permeable, well vegetated areas (forest, flat land). The paper is presenting 3 experimental stands of green roofs. Each stand is unique in terms of its construction. The aim of this paper is to highlight how green roof responds to real clima events. The experiment provides mathematical graphs and behaviour of the geen roof stands from 03/2019 to 01/2021.


2018 ◽  
Vol 49 (4) ◽  
pp. 242-252 ◽  
Author(s):  
Francesco Bettella ◽  
Vincenzo D'Agostino ◽  
Lucia Bortolini

The role of green roofs in reducing drainage fluxes is known, but despite extensive analysis in the literature, methods to predict the hydrologic performance for a given green roof composition are scarce. These methods are useful for the hydraulic design and for planning regulations that impose specific hydrological responses. This research investigates on the prediction of the drainage fluxes produced below a green roof with initial water content equal to its water retention capacity (worst-case scenario). Laboratory tests were performed to analyse the rainfall-drainage relationship for green-roof and single components (growing media and drainage storage layers) under specific rainfall intensities. Two types of largely used drainage/storage layers and growth media were analysed, both singularly and in combination. The experiments consider two rainfall events lasting 10 min with constant intensity. The results indicate that the Curve Number (CN) method (U.S. Soil Conservation Service) with a simple adaptation can be used to reproduce the green-roof hydrologic behaviour under antecedent moisture conditions comparable with those of the experiments. In fact, the water retention capacity, controlling the water-output initiation below the green roof, can be used as threshold variable of a step function, above which the CN method is applicable and below which drainage fluxes are practically null. Through this position, the CN assignment for a composite greenroof can be consistently estimated using the proprieties of the single components (drainage/storage layer and growing medium) and it provides values that are very close to those of waterproof media and quite higher than those suggested in companion researches. Drainage amounts are predicted with a standard error equal to 1.50 mm, which corresponds to 5.7% of the mean value observed. After rain initiation, the steady state condition of the drainage flux has proved to be markedly affected by the growing medium and drainage layer composing the system, which result effective in discriminating the green roof performance.


2002 ◽  
Vol 80 (11) ◽  
pp. 1151-1159 ◽  
Author(s):  
M Dusabenyagasani ◽  
G Laflamme ◽  
R C Hamelin

We detected nucleotide polymorphisms within the genus Gremmeniella in DNA sequences of β-tubulin, glyceraldehyde phosphate dehydrogenase, and mitochondrial small subunit rRNA (mtSSU rRNA) genes. A group-I intron was present in strains originating from fir (Abies spp.) in the mtSSU rRNA locus. This intron in the mtSSU rRNA locus of strains isolated from Abies sachalinensis (Fridr. Schmidt) M.T. Mast in Asia was also found in strains isolated from Abies balsamea (L.) Mill. in North America. Phylogenetic analyses yielded trees that grouped strains by host of origin with strong branch support. Asian strains of Gremmeniella abietina (Lagerberg) Morelet var. abietina isolated from fir (A. sachalinensis) were more closely related to G. abietina var. balsamea from North America, which is found on spruce (Picea spp.) and balsam fir, and European and North American races of G. abietina var. abietina from pines (Pinus spp.) were distantly related. Likewise, North American isolates of Gremmeniella laricina (Ettinger) O. Petrini, L.E. Petrini, G. Laflamme, & G.B. Ouellette, a pathogen of larch, was more closely related to G. laricina from Europe than to G. abietina var. abietina from North America. These data suggest that host specialization might have been the leading evolutionary force shaping Gremmeniella spp., with geographic separation acting as a secondary factor.Key words: Gremmeniella, geographic separation, host specialization, mitochondrial rRNA, nuclear genes.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1278
Author(s):  
Michael Glenn O’Connor ◽  
Amjad Horani ◽  
Adam J. Shapiro

Primary Ciliary Dyskinesia (PCD) is a rare, under-recognized disease that affects respiratory ciliary function, resulting in chronic oto-sino-pulmonary disease. The PCD clinical phenotype overlaps with other common respiratory conditions and no single diagnostic test detects all forms of PCD. In 2018, PCD experts collaborated with the American Thoracic Society (ATS) to create a clinical diagnostic guideline for patients across North America, specifically considering the local resources and limitations for PCD diagnosis in the United States and Canada. Nasal nitric oxide (nNO) testing is recommended for first-line testing in patients ≥5 years old with a compatible clinical phenotype; however, all low nNO values require confirmation with genetic testing or ciliary electron micrograph (EM) analysis. Furthermore, these guidelines recognize that not all North American patients have access to nNO testing and isolated genetic testing is appropriate in cases with strong clinical PCD phenotypes. For unresolved diagnostic cases, referral to a PCD Foundation accredited center is recommended. The purpose of this narrative review is to provide insight on the North American PCD diagnostic process, to enhance the understanding of and adherence to current guidelines, and to promote collaboration with diagnostic pathways used outside of North America.


2021 ◽  
Vol 13 (8) ◽  
pp. 4278
Author(s):  
Svetlana Tam ◽  
Jenna Wong

Sustainability addresses the need to reduce the structure’s impact on the environment but does not reduce the environment’s impact on the structure. To explore this relationship, this study focuses on quantifying the impact of green roofs or vegetated roofs on seismic responses such as story displacements, interstory drifts, and floor level accelerations. Using an archetype three-story steel moment frame, nonlinear time history analyses are conducted in OpenSees for a shallow and deep green roof using a suite of ground motions from various distances from the fault to identify key trends and sensitivities in response.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1033
Author(s):  
Lloyd C. Irland ◽  
John Hagan

Why have a special issue on North American options for reducing national CO2 footprints through forest management [...]


Sign in / Sign up

Export Citation Format

Share Document