Global and Local Clustering-Based Regression Models to Forecast Power Consumption in Buildings

Author(s):  
Gonzalo Vergara ◽  
Juan J. Carrasco ◽  
Jesus Martínez-Gómez ◽  
Manuel Domínguez ◽  
José A. Gámez ◽  
...  

The study of energy efficiency in buildings is an active field of research. Modeling and predicting energy related magnitudes leads to analyze electric power consumption and can achieve economical benefits. In this study, classical time series analysis and machine learning techniques, introducing clustering in some models, are applied to predict active power in buildings. The real data acquired corresponds to time, environmental and electrical data of 30 buildings belonging to the University of León (Spain). Firstly, we segmented buildings in terms of their energy consumption using principal component analysis. Afterwards, we applied state of the art machine learning methods and compare between them. Finally, we predicted daily electric power consumption profiles and compare them with actual data for different buildings. Our analysis shows that multilayer perceptrons have the lowest error followed by support vector regression and clustered extreme learning machines. We also analyze daily load profiles on weekdays and weekends for different buildings.

2019 ◽  
pp. 506-536
Author(s):  
Gonzalo Vergara ◽  
Juan J. Carrasco ◽  
Jesus Martínez-Gómez ◽  
Manuel Domínguez ◽  
José A. Gámez ◽  
...  

The study of energy efficiency in buildings is an active field of research. Modeling and predicting energy related magnitudes leads to analyze electric power consumption and can achieve economical benefits. In this study, classical time series analysis and machine learning techniques, introducing clustering in some models, are applied to predict active power in buildings. The real data acquired corresponds to time, environmental and electrical data of 30 buildings belonging to the University of León (Spain). Firstly, we segmented buildings in terms of their energy consumption using principal component analysis. Afterwards, we applied state of the art machine learning methods and compare between them. Finally, we predicted daily electric power consumption profiles and compare them with actual data for different buildings. Our analysis shows that multilayer perceptrons have the lowest error followed by support vector regression and clustered extreme learning machines. We also analyze daily load profiles on weekdays and weekends for different buildings.


2019 ◽  
Vol 8 (2) ◽  
pp. 3697-3705 ◽  

Forest fires have become one of the most frequently occurring disasters in recent years. The effects of forest fires have a lasting impact on the environment as it lead to deforestation and global warming, which is also one of its major cause of occurrence. Forest fires are dealt by collecting the satellite images of forest and if there is any emergency caused by the fires then the authorities are notified to mitigate its effects. By the time the authorities get to know about it, the fires would have already caused a lot of damage. Data mining and machine learning techniques can provide an efficient prevention approach where data associated with forests can be used for predicting the eventuality of forest fires. This paper uses the dataset present in the UCI machine learning repository which consists of physical factors and climatic conditions of the Montesinho park situated in Portugal. Various algorithms like Logistic regression, Support Vector Machine, Random forest, K-Nearest neighbors in addition to Bagging and Boosting predictors are used, both with and without Principal Component Analysis (PCA). Among the models in which PCA was applied, Logistic Regression gave the highest F-1 score of 68.26 and among the models where PCA was absent, Gradient boosting gave the highest score of 68.36.


An Intrusion Detection System (IDS) is a system, that checks the network or data for abnormal actions and when such activity is discovered it issues an alert. Numerous IDS techniques are in use these days but one major problem with all of them is their performance. Various works have been done on this issue using support vector machine and multilayer perceptron. Supervised learning models such as support vector machines with related learning algorithms are used to analyze the data which is used for regression analysis and also classification. The IDS is used in analyzing big data as there is huge traffic which has to be analyzed to check for suspicious activities, and also be successful in doing so. Hence, an efficient and fast classification algorithm is required. Machine learning techniques such as neural networks and extreme machine learning are used. Both of these techniques are highly regarded and are considered one of the best techniques. Extreme learning machines are feed forward neural networks which have one hidden layer and no back propagation used for classification. Once the intrusion is detected using IDS through ELM then we are also going to detect the type of intrusion using the Random Forest Technique (Multi class classification) efficiently with a higher rate of accuracy and precision. The NSL_KDD dataset which is very well-known used for the training as well as testing of these IDS algorithms. This work determines that compared to artificial neural network and logistic regression extreme learning machines provide a much better rate of intrusion detection, which is 93.96% and is also proven to be more efficient in terms of execution time of 38 seconds


2021 ◽  
Author(s):  
Pablo Cresta Morgado ◽  
Martín Carusso ◽  
Laura Alonso Alemany ◽  
Laura Acion

Machine learning assembles a broad set of methods and techniques to solve a wide range of problems, such as identifying individuals with substance use disorders (SUD), finding patterns in neuroimages, understanding SUD prognostic factors and their association, or determining addiction genetic underpinnings. However, machine learning use in the addiction research field continues to be insufficient. This two-part review focuses on machine learning tools and concepts and provides insights into their capabilities to facilitate their understanding and acquisition by addiction researchers. In this first part, we present supervised and unsupervised methods and techniques such as linear models, naive Bayes, support vector machines, artificial neural networks, k-means, or principal component analysis and examples of how these tools are already in use in addiction research. We also provide open-source programming tools to apply these techniques. Throughout this work, we link machine learning techniques to applied statistics. Machine learning tools and techniques can be applied to many addiction research problems and can improve addiction research.


The healthcare industry is inflicted with the plethora of patient data which is being supplemented each day manifold. Researchers have been continually using this data to help the healthcare industry improve upon the way major diseases could be handled. They are even working upon the way the patients could be informed timely of the symptoms that could avoid the major hazards related to them. Diabetes is one such disease that is growing at an alarming rate today. In fact, it can inflict numerous severe damages; blurred vision, myopia, burning extremities, kidney and heart failure. It occurs when sugar levels reach a certain threshold, or the human body cannot contain enough insulin to regulate the threshold. Therefore, patients affected by Diabetes must be informed so that proper treatments can be taken to control Diabetes. For this reason, early prediction and classification of Diabetes are significant. This work makes use of Machine Learning algorithms to improve the accuracy of prediction of the Diabetes. A dataset obtained as an output of K-Mean Clustering Algorithm was fed to an ensemble model with principal component analysis and K-means clustering. Our ensemble method produced only eight incorrectly classified instances, which was lowest compared to other methods. The experiments also showed that ensemble classifier models performed better than the base classifiers alone. Its result was compared with the same Dataset being applied on specific methods like random forest, Support Vector Machine, Decision Tree, Multilayer perceptron, and Naïve Bayes classification methods. All methods were run using 10k fold cross-validation.


2021 ◽  
Vol 11 (14) ◽  
pp. 6420
Author(s):  
Antonio Parejo ◽  
Stefano Bracco ◽  
Enrique Personal ◽  
Diego Francisco Larios ◽  
Federico Delfino ◽  
...  

Short-term electric power forecasting is a tool of great interest for power systems, where the presence of renewable and distributed generation sources is constantly growing. Specifically, this type of forecasting is essential for energy management systems in buildings, industries and microgrids for optimizing the operation of their distributed energy resources under different criteria based on their expected daily energy balance (the consumption–generation relationship). Under this situation, this paper proposes a complete framework for the short-term multistep forecasting of electric power consumption and generation in smart grids and microgrids. One advantage of the proposed framework is its capability of evaluating numerous combinations of inputs, making it possible to identify the best technique and the best set of inputs in each case. Therefore, even in cases with insufficient input information, the framework can always provide good forecasting results. Particularly, in this paper, the developed framework is used to compare a whole set of rule-based and machine learning techniques (artificial neural networks and random forests) to perform day-ahead forecasting. Moreover, the paper presents and a new approach consisting of the use of baseline models as inputs for machine learning models, and compares it with others. Our results show that this approach can significantly improve upon the compared techniques, achieving an accuracy improvement of up to 62% over that of a persistence model, which is the best of the compared algorithms across all application cases. These results are obtained from the application of the proposed methodology to forecasting five different load and generation power variables for the Savona Campus at the University of Genova in Italy.


2015 ◽  
Vol 77 (1) ◽  
Author(s):  
Ban Mohammed Khammas ◽  
Alireza Monemi ◽  
Joseph Stephen Bassi ◽  
Ismahani Ismail ◽  
Sulaiman Mohd Nor ◽  
...  

Malware is a computer security problem that can morph to evade traditional detection methods based on known signature matching. Since new malware variants contain patterns that are similar to those in observed malware, machine learning techniques can be used to identify new malware. This work presents a comparative study of several feature selection methods with four different machine learning classifiers in the context of static malware detection based on n-grams analysis. The result shows that the use of Principal Component Analysis (PCA) feature selection and Support Vector Machines (SVM) classification gives the best classification accuracy using a minimum number of features.


2020 ◽  
Vol 23 (65) ◽  
pp. 19-32
Author(s):  
Maged Mamdouh ◽  
Mostafa Ezzat ◽  
Hesham A. Hefny

The airport ground handling has a global trend to meet the Service Level Agreement (SLA) requirementsthat represents resource allocation with more restrictions according to flights. That can be achieved by predictingfuture resources demands. this research presents a comparison between the most used machine learning techniquesimplemented in many different fields for demand prediction and resource allocation. The prediction model nomi-nated and used in this research is the Support Vector Machine (SVM) to predict the required resources for eachflight, despite the restrictions imposed by airlines when contracting their services in the Service Level Agreement.The approach has been trained and tested using real data from Cairo International Airport. the proposed (SVM)technique implemented and explained with a varying accuracy of resource allocation prediction, showing thateven for variations accuracy in resource prediction in different scenarios; the Support Vector Machine techniquecan produce a good performance as resource allocation in the airport.


Sign in / Sign up

Export Citation Format

Share Document