High Thermal Conductivity Polymer Insulation

In this chapter, a range of silicone rubber (SiR), polypropylene (PP) and polyethylene (PE) based composites filled with micro or nano sized boron nitride (BN) particles at different loadings were manufactured to investigate effects of thermal conductivity. The study of SiR attempts to clarify whether the addition of boron nitride (BN) particles can improve the resistance to tracking and erosion of SiR by increasing its thermal conductivity. For PP, in addition to measuring thermal conductivity of various samples, thermal dissipation was also discussed to analyze the relationship between them. Meanwhile, in order to evaluate tracking failure (a kind of surface dielectric breakdown) resistance of the manufactured samples, time to failure, erosion depth and weight loss of the test samples were measured through tracking test. As for PE, Thermal conductivity and relative permittivity were measured to characterize the basic properties of various samples. Obtained results show that several properties of the filled specimens are obviously improved.

2022 ◽  
Author(s):  
Dong Wang ◽  
Dingyao Liu ◽  
JianHua Xu ◽  
JiaJun Fu ◽  
Kai Wu

It is still a formidable challenge to develop ideal thermal dissipation materials with simultaneous high thermal conductivity, excellent mechanical softness and toughness, and spontaneous self-healing. Herein, we report the introduction...


2019 ◽  
Vol 304 (12) ◽  
pp. 1900442 ◽  
Author(s):  
Yufeng Bai ◽  
Weifang Han ◽  
Chunhua Ge ◽  
Rui Liu ◽  
Rui Zhang ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (83) ◽  
pp. 44282-44290 ◽  
Author(s):  
Jun Hou ◽  
Guohua Li ◽  
Na Yang ◽  
Lili Qin ◽  
Maryam E. Grami ◽  
...  

The fabricated surface modified boron nitride epoxy composites exhibit high thermal conductivity, superior thermal stability and good mechanical properties while retaining good electrical insulation properties.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22846-22852 ◽  
Author(s):  
Seokgyu Ryu ◽  
Taeseob Oh ◽  
Jooheon Kim

Boron nitride (BN) particles surface-treated with different amounts of aniline trimer (AT) were used to prepare thermally conductive polymer composites with epoxy-terminated dimethylsiloxane (ETDS).


2018 ◽  
Vol 6 (36) ◽  
pp. 17540-17547 ◽  
Author(s):  
Zhilin Tian ◽  
Jiajia Sun ◽  
Shaogang Wang ◽  
Xiaoliang Zeng ◽  
Shuang Zhou ◽  
...  

A high thermal conductivity boron nitride based thermal interface material was developed by a foam-templated method.


2020 ◽  
Vol 4 (3) ◽  
pp. 116
Author(s):  
Maryam Khalaj ◽  
Sanaz Zarabi Golkhatmi ◽  
Sayed Ali Ahmad Alem ◽  
Kahila Baghchesaraee ◽  
Mahdi Hasanzadeh Azar ◽  
...  

Ever-increasing significance of composite materials with high thermal conductivity, low thermal expansion coefficient and high optical bandgap over the last decade, have proved their indispensable roles in a wide range of applications. Hexagonal boron nitride (h-BN), a layered material having a high thermal conductivity along the planes and the band gap of 5.9 eV, has always been a promising candidate to provide superior heat transfer with minimal phonon scattering through the system. Hence, extensive researches have been devoted to improving the thermal conductivity of different matrices by using h-BN fillers. Apart from that, lubrication property of h-BN has also been extensively researched, demonstrating the effectivity of this layered structure in reduction of friction coefficient, increasing wear resistance and cost-effectivity of the process. Herein, an in-depth discussion of thermal and tribological properties of the reinforced composite by h-BN will be provided, focusing on the recent progress and future trends.


Sign in / Sign up

Export Citation Format

Share Document