The Use of Microwave Energy at Thermal Treatment of Grain Crops

Author(s):  
Dmitry Budnikov ◽  
Aleksey Vasiliev

Thermal treatment is used for different grain crops during the processes of drying, disinfection, and preparation to feeding, etc. The high cost of the processes is caused by the cost of energy and the energy-output ratio of the processes. The development of the processing regimes with the use of electric technologies in general and electromagnetic fields in particular can reduce the cost of the mentioned processes. When IR and MW fields are used, there occurs the direct heating of the grain material without the coolant, due to the effect of the field on water molecules in the kernels. As the grain is a colloid capillary-porous substance, moisture can be in a bound or free state that affects the properties of the material and the thermal processes in it. The use of the special programs gives vast possibilities for the design of such equipment. Using of MW fields allows reducing the cost of the thermal treatment 15-20% depending on the process and type of the processing material.

2015 ◽  
Vol 9 (1) ◽  
pp. 2303-2310
Author(s):  
Abderrahim Benchaib ◽  
Abdesselam Mdaa ◽  
Izeddine Zorkani ◽  
Anouar Jorio

The vanadium dioxide VO₂ currently became very motivating for the nanotechnologies’ researchers. It makes party of the intelligent materials because these optical properties abruptly change semiconductor state with metal at a critical  temperature θ = 68°C. This transition from reversible phase is carried out from a monoclinical structure characterizing its semiconductor state at low temperature towards the metal state of this material which becomes tétragonal rutile for  θ ˃ 68°C ; it is done during a few nanoseconds. Several studies were made on this material in a massive state and a thin layer. We will simulate by Maple the constant optics of a thin layer of VO₂ thickness z = 82 nm for the metal state according to the energy ω of the incidental photons in the energy interval: 0.001242 ≤ ω(ev) ≤ 6, from the infra-red (I.R) to the ultra-violet (U.V) so as to be able to control the various technological nano applications, like the detectors I.R or the U.V,  the intelligent windows to  increase  the energy efficiency in the buildings in order to save the cost of energy consumption by electric air-conditioning and the paintings containing nano crystals of this material. The constant optics, which we will simulate, is: the index of refraction, the reflectivity, the transmittivity, the coefficient of extinction, the dielectric functions ԑ₁ real part and  ԑ₂  imaginary part of the permittivity complexes ԑ of this material and the coefficient absorption. 


The results revealed that on an overall average size of landholding was estimated to be 0.97 ha. The total cultivated area at all categories of sample farms were found to be irrigated. Overall average, cost of cultivation was estimated `27819.43 per ha. The cost of cultivation showed positive relation with size of holding. The cost of cultivation was highest on medium farms (`32549.25) followed by small (`31528.40 and marginal (`29171.74), respectively. Overall average, cost of production was estimated `2446.44 per hectare. On an average input-output ratio on the basis Costs A1/A2, B1, B2, C1, and C2 were recorded 1:2.86, 1:2.77, 1:1.91, 1:1.89 and 1:1.46, respectively. On the basis of Cost C2 input-output ratio was highest on marginal farms (1:1.47) followed by small (1:1.44) and medium (1:1.43), respectively. Overall average, net income and gross income were found `9859.33 and 40028.69 per ha, respectively.


1980 ◽  
Vol 7 (2) ◽  
pp. 256-263 ◽  
Author(s):  
M. A. Ward ◽  
S. M. Khalil ◽  
B. W. Langan

As the cost of energy and hence the cost of producing Portland cement increase, the question arises as to whether we are obtaining optimum performance from the admixtures we use. As an example, data are presented indicating that a significant improvement in strength and shrinkage can be achieved by optimizing the sulfate content of the cement for given cement–admixture combinations. It is shown that the optimum SO3 is clearly a function of the initial temperature of the concrete, particularly during the first 24 h after casting, a characteristic of considerable importance in hot weather concreting and steam curing of concrete products. It is recommended that more attention be directed towards optimizing the effectiveness of chemical admixtures in both the ready-mixed concrete and precast concrete industries.


Author(s):  
G. E. Servetnik ◽  
E. V. Pishchenko

Feeding is one of the main methods of intensification of agricultural fish farming. Based on FAO reports, the share of aquaculture products grown with feed is gradually increasing. In pond farms with medium and high degree of intensification, up to 80% of fish products are produced due to feeding. Moreover, in the structure of the cost of fish production, compound feeds account for up to half of the total costs, and in industrial aquaculture up to 65–70%. It is shown that it is Known that feeding and growing technology account for about 55% of the success rate of increasing fish productivity, while the genetic potential is only about 25%, and the share of veterinary and sanitary well-being of fish accounts for about 20%. In Russia and many other countries, cereals are used to reduce the cost of carp farming products, as a relatively cheap and affordable source of energy compared to granulated feed. The availability and low cost of such feed is of paramount importance in pond aquaculture and currently all cereal species are used for artificial feeding. Information about feeding carp with grain crops, as well as requirements for the quality and safety of feed is provided. It is indicated that feeding carp with whole grains is advisable if the natural food base is well developed. Traditional fish farming experience shows that feeding carp with whole wheat grain is advisable when the planting density of two-year-olds is up to 3.5 thousand / ha and mainly in August-September. Before eating fish, the grain must necessarily swell in water, otherwise it injures the intestines and is excreted from the digestive tract poorly digested.


Author(s):  
Jake Barker ◽  
Bo Xia ◽  
George Zillante

There is a growing demand for sustainable retirement villages in Australia due to an increasing number of ageing population and public acceptance of sustainable development. This research aims to gain a better understanding of retirees’ understanding about sustainable retirement living and their attitudes towards sustainable developments via a questionnaire survey approach. The results showed that the current residents of retirement villages are generally very conscious of unsustainable resource consumption and would like their residences and community to be more environmentally friendly and energy efficient. The cost of energy supply is a concern to majority of respondents. However there is a certain level of concerns from residents too on the extra cost of going green in their residence. Education is required to residents about recycling household waste and how to use available facilities. A better understanding of retirees’ awareness and attitudes towards sustainability issues helps to improve the sustainable developments of retirement villages in the future.


2013 ◽  
Vol 64 (2) ◽  
pp. 76-83
Author(s):  
Hamed Hashemi-Dezaki ◽  
Ali Agheli ◽  
Behrooz Vahidi ◽  
Hossein Askarian-Abyaneh

The use of distributed generations (DGs) in distribution systems has been common in recent years. Some DGs work stand alone and it is possible to improve the system reliability by connecting these DGs to system. The joint point of DGs is an important parameter in the system designing. In this paper, a novel methodology is proposed to find the optimum solution in order to make a proper decision about DGs connection. In the proposed method, a novel objective function is introduced which includes the cost of connector lines between DGs and network and the cost of energy not supplied (CENS) savings. Furthermore, an analytical approach is used to calculate the CENS decrement. To solve the introduced nonlinear optimization programming, the genetic algorithm (GA) is used. The proposed method is applied to a realistic 183-bus system of Tehran Regional Electrical Company (TREC). The results illustrate the effectiveness of the method to improve the system reliability by connecting the DGs work stand alone in proper placements.


2018 ◽  
Vol 8 (5) ◽  
pp. 3421-3426 ◽  
Author(s):  
F. Chermat ◽  
M. Khemliche ◽  
A. E. Badoud ◽  
S. Latreche

This work aims to consider the combination of different technologies regarding energy production and management with four possible configurations. We present an energy management algorithm to detect the best design and the best configuration from the combination of different sources. This combination allows us to produce the necessary electrical energy for supplying habitation without interruption. A comparative study is conducted among the different combinations on the basis of the cost of energy, diesel consumption, diesel price, capital cost, replacement cost, operation, and maintenance cost and greenhouse gas emission. Sensitivity analysis is also performed.


2021 ◽  
Vol 6 ◽  
pp. 41
Author(s):  
Hussein A. Kazem ◽  
Anas Quteishat ◽  
Mahmoud A. Younis

Solar water pumping systems are fundamental entities for water transmission and storage purposes whether it is has been used in irrigation or residential applications. The use of photovoltaic (PV) panels to support the electrical requirements of these pumping systems has been executed globally for a long time. However, introducing optimization sizing techniques to such systems can benefit the end-user by saving money, energy, and time. This paper proposed solar water pumping systems optimum design for Oman. The design, and evaluation have been carried out through intuitive, and numerical methods. Based on hourly meteorological data, the simulation used both HOMER software and numerical method using MATLAB code to find the optimum design. The selected location ambient temperature variance from 12.8 °C to 44.5 °C over the year and maximum insolation is 7.45 kWh/m2/day, respectively. The simulation results found the average energy generated, annual yield factor, and a capacity factor of the proposed system is 2.9 kWh, 2016.66 kWh/kWp, and 22.97%, respectively, for a 0.81 kW water pump, which is encouraging compared with similar studied systems. The capital cost of the system is worth it, and the cost of energy has compared with other systems in the literature. The comparison shows the cost of energy to be in favor of the MATLAB simulation results with around 0.24 USD/kWh. The results show successful operation and performance parameters, along with cost evaluation, which proves that PV water pumping systems are promising in Oman.


2018 ◽  
Author(s):  
Ali Nahvi

Wind power generation has witnessed a dramatic growth in the 21st century. The Department of Energy (DOE) had a vision for wind energy that it would change into an extensively greater part of overall power generation in the U.S. by 2050. As specified by the DOE, wind power generation has grown by trifold from 2008 to 2013. This study presents a constructible, financially feasible alternative wind tower design to the 80 m steel tower platform which has the potential to decrease the overall Levelized cost of energy (LCOE). A hexagonal concrete wind tower solution is evaluated to facilitate the fabrication of a taller wind turbine generator to harvest more powerful, stable, and frequent wind resources for elevating wind energy production to cut down the overall LCOE. Subject matter experts from the industry were benefitted from to develop a process and estimate the cost and schedule of development and assembly of this process. To mitigate uncertainties and quantify risks, a sensitivity analysis was carried out on cost and schedule estimates. Also, estimating LCOE of wind towers is a primary requirement for efficient assimilation of wind power generation in the electricity market. In the state of Iowa, wind power is rapidly becoming a significant electricity generator. Unpredictable outputs and different options for deploying wind towers are one of the major problems of power system operators. Good estimation tools are important and will be needed to integrate wind energy into the economic power plant. The other objective of this research is to propose a GIS-based map to visualize LCOE of different wind tower construction options in various locations. Therefore, wind speed GIS mapping by using weather information will be crucial. Calculation of energy output by applying wind gradient formula to wind speeds energy are performed. The research concludes of Hexcrete towers can be achieved by use of the 120m and 140 m Hexcrete tower platform on certain wind sites in the United States.


Sign in / Sign up

Export Citation Format

Share Document