Kinematic Modelling and Simulation of 8 Degrees of Freedom SCARA Robot

Author(s):  
Saravana Mohan M. ◽  
Anbumalar V.

Robots are electromechanical systems that need mechatronic approach before manufacturing to reduce the development cost. In this chapter, the modelling of the 8 degrees of freedom (DOF) SCARA robot with a multiple gripper using SolidWorks CAD software and the dynamic study with the aid of MATLAB/SimMechanics is presented. The SCARA with multiple gripper is used for pick and place operation in manufacturing industries. The SolidWorks CAD model of SCARA with multiple grippers is converted into SimMechanics block diagram by exporting the 3D CAD model to the MATLAB/SimMechanics second generation technology environment. The motion sensing capability of the SimMechanics is used for determining the dynamic parameters of the manipulators. The SimMechanics block diagrams and the results of the dynamic study presented in this chapter infer that the structure of the robot can be changed to get the required dynamic parameters.

Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 160
Author(s):  
Zvonko Trzun ◽  
Milan Vrdoljak ◽  
Hrvoje Cajner

The effect of manufacturing quality on rocket impact point dispersion is analyzed. The approach presented here applies to any type of rocket. Here, manufacturing quality is demonstrated for the unguided rocket, and by simulating four typical manufacturing errors: erroneously manufactured warhead, misalignment between the warhead and engine chamber, asymmetrically installed propellant, and error in nozzle manufacturing. A new methodology is proposed, which combines a 3D CAD model of the asymmetrical projectile (due to manufacturing errors) and the improved Six-degrees-of-freedom (6DOF) model of its flight into a comprehensive Monte-Carlo simulation. In that way, the rocket trajectory dispersion is correlated directly to the imperfection of the manufacturing process. Three quality levels are simulated (low, standard, and high quality), and each of the analyzed manufacturing errors depends on the chosen quality. The results show how important it is to impose the highest quality on nozzle manufacturing, and if this condition is not met, reveal if strict tolerances applied to other steps of the manufacturing process can compensate for the consequential drop of precision.


2010 ◽  
Vol 13 (4) ◽  
pp. 91-98
Author(s):  
Tuan Dinh Phan ◽  
Binh Thien Nguyen ◽  
Dien Khanh Le ◽  
Phuong Hoang Pham

The paper presents an application the research results previously done by group on the influence of technological parameters to the deformation angle and finish surface quality in order to choose technology parameters for the incremental sheet forming (ISF) process to produce products for the purpose of rapid prototyping or single-batch production, including all steps from design and process 3D CAD model, calculate and select the technological parameters, setting up manufacturing and the stage of post-processing. The samples formed successfully showed high applicability of this technology to practical work, the complex products with the real size can be produced in industries: automotive, motorcycle, civil...


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 444
Author(s):  
Guoning Si ◽  
Liangying Sun ◽  
Zhuo Zhang ◽  
Xuping Zhang

This paper presents the design, fabrication, and testing of a novel three-dimensional (3D) three-fingered electrothermal microgripper with multiple degrees of freedom (multi DOFs). Each finger of the microgripper is composed of a V-shaped electrothermal actuator providing one DOF, and a 3D U-shaped electrothermal actuator offering two DOFs in the plane perpendicular to the movement of the V-shaped actuator. As a result, each finger possesses 3D mobilities with three DOFs. Each beam of the actuators is heated externally with the polyimide film. The durability of the polyimide film is tested under different voltages. The static and dynamic properties of the finger are also tested. Experiments show that not only can the microgripper pick and place microobjects, such as micro balls and even highly deformable zebrafish embryos, but can also rotate them in 3D space.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2562
Author(s):  
Tomasz Dzitkowski ◽  
Andrzej Dymarek ◽  
Jerzy Margielewicz ◽  
Damian Gąska ◽  
Lukasz Orzech ◽  
...  

A method for selecting dynamic parameters and structures of drive systems using the synthesis algorithm is presented. The dynamic parameters of the system with six degrees of freedom, consisting of a power component (motor) and a two-speed gearbox, were determined, based on a formalized methodology. The required gearbox is to work in specific resonance zones, i.e., meet the required dynamic properties such as the required resonance frequencies. In the result of the tests, a series of parameters of the drive system, defining the required dynamic properties such as the resonance and anti-resonance frequencies were recorded. Mass moments of inertia of the wheels and elastic components, contained in the required structure of the driving system, were determined for the selected parameters obtained during the synthesis.


2018 ◽  
Vol 184 ◽  
pp. 02006
Author(s):  
Mariana Ratiu ◽  
Alexandru Rus ◽  
Monica Loredana Balas

In this paper, we present the first steps in the process of the modeling in ADAMS MBS of MSC software of the mechanical system of an articulated robot, with six revolute joints. The geometric 3D CAD model of the robot, identical to the real model, in the PARASOLID format, is imported into ADAMS/View and then are presented the necessary steps for building the kinematic model of the robot. We conducted this work, in order to help us in our future research, which will consist of kinematic and dynamic analysis and optimization of the robot motion.


2021 ◽  
Vol 16 (11) ◽  
pp. C11013
Author(s):  
J.M. Santos ◽  
E. Ricardo ◽  
F.J. da Silva ◽  
T. Ribeiro ◽  
S. Heuraux ◽  
...  

Abstract The use of advanced simulation has become increasingly more important in the planning, design, and assessment phases of future fusion plasma diagnostics, and in the interpretation of experimental data from existing ones. The design cycle of complex reflectometry systems, such as the ones being planned for next generation machines (IDTT and DEMO), relies heavily on the results produced by synthetic diagnostics, used for system performance evaluation and prediction, both crucial in the design process decision making. These synthetic diagnostics need realistic representations of all system components to incorporate the main effects that shape their behavior. Some of the most important elements that are required to be well modelled and integrated in simulations are the wave launcher structures, such as the waveguides, tapers, and antennas, as well as the vessel wall structures and access to the plasma. The latter are of paramount importance and are often neglected in this type of studies. Faithfully modelling them is not an easy task, especially in 3D simulations. The procedure herein proposed consists in using CAD models of a given machine, together with parameterizable models of the launcher, to produce a description suited for Finite Difference Time Domain (FDTD) 3D simulation, combining the capabilities of real-world CAD design with the power of simulation. However, CAD model geometric descriptions are incompatible with the ones used by standard FDTD codes. CAD software usually outputs models in a tessellated mesh while FDTD simulators use Volumetric Pixel (VOXEL) descriptions. To solve this interface problem, we implemented a pipeline to automatically convert complex CAD models of tokamak vessel components and wave launcher structures to the VOXEL input required by REFMUL3, a full wave 3D Maxwell FDTD parallel code. To illustrate the full procedure, a complex reflectometry synthetic diagnostic for IDTT was setup, converted and simulated. This setup includes 3 antennas recessed into the vessel wall, for thermal protection, one for transmission and reception, and two just for reception.


2011 ◽  
Vol 467-469 ◽  
pp. 2054-2059
Author(s):  
Kai Zhang ◽  
Miao Yan Li ◽  
Xin Min Zhang

Laser Metal Deposition Shaping (LMDS) is a Rapid Manufacturing (RM) process that can be classified under the area of layered manufacturing techniques, where parts are built in layers. Parts of any complexity can be built directly from the 3D CAD model without much human intervention and requires minimum post-processing. In fact, LMDS technique can be recognized as multilayer laser cladding. Accordingly, it is necessary to perform the elementary laser cladding experiments with common metal powder so as to better understand the LMDS process. Then the characteristics of microstructure, composition and phase of as-deposited clads were analyzed through SEM and XRD, as well as relative model. The results prove that the microstructure of 316 stainless steel deposits is composed of the slender dendrites growing epitaxially from the substrate, and the composition is uniform without obvious segregation. Besides, it can be deduced from XRD diagram that the microstructure is composed of mono-phase γ.


2020 ◽  
Vol 8 (6) ◽  
pp. 2689-2693

With the accomplishment of new engineering science and technologies, machineries formulated by the the technocrats are utilized in medical field. Biomedical Engineering has thus gained a prominent status in the recent years. Few decades ago, it was considered as weird thing if any mechanical engineers performed studies on dental area, but in today’s scenario mechanical engineers are doing studies as well as research in the area of dental science. In this paper an attempt has been made to select best crown material for molar tooth, So that an appropriate material can be placed in the human body which is most difficult task .so for designing a molar crown, modeling is done in pro/engineer software, it is one of the parametric 3D CAD/CAM/CAE solution widely used by mechanical engineers for designing any product .this software creates a complete 3D Digital model of the product. For this extensive research, design for all crowns will be the same but only material properties will be different. After design, failure analysis is done. Loss of ability to function normally is the study of failure analysis. This is accomplished by considering various loading conditions .Here finite element analysis is used, the standard principle underlying the FEM are simple. The word finite is used to describe the limited, or finite, number of degrees of freedom used to model the behavior of each element, the element are assumed to be connected to one another but only at interconnected joints, known as nodes. Considering a body through which the distribution of a field variable I.e. displacement or stress is required, this body could be subjected to various loads. Problem is solved by two methods: static fatigue and dynamic fatigue


Sign in / Sign up

Export Citation Format

Share Document