GIS Based Interoperable Platform for Disaster Data Exchange Using OGC Standards and Spatial Query

Author(s):  
Sunitha Abburu

Accurate, speedy and interoperable information exchange among the stakeholders achieve effective rescue and relief operations in an emergency. The current research work aims at location-based real time or near real time disaster data gathering and accumulation. The dynamic disaster data is integrated with the static geospatial data to facilitate spatial analytics and disseminate the integrated data through OGC web services to various stakeholders for further processing by different expert domain applications. The research work also facilitates spatio-temporal querying system through Geo-query, and OLAP operations on integrated disaster data with geospatial visualization. The design and implementation of the work is achieved through a mobile application integrated with a GIS based web portal by a centralized remote server. The entire architecture has been tested by implementing in an emergency situation and facilitated by an effective interoperable information exchange and spatio-temporal queries.

2017 ◽  
Vol 9 (1) ◽  
pp. 29-51 ◽  
Author(s):  
Sunitha Abburu

Accurate, speedy and interoperable information exchange among the stakeholders achieve effective rescue and relief operations in an emergency. The current research work aims at location-based real time or near real time disaster data gathering and accumulation. The dynamic disaster data is integrated with the static geospatial data to facilitate spatial analytics and disseminate the integrated data through OGC web services to various stakeholders for further processing by different expert domain applications. The research work also facilitates spatio-temporal querying system through Geo-query, and OLAP operations on integrated disaster data with geospatial visualization. The design and implementation of the work is achieved through a mobile application integrated with a GIS based web portal by a centralized remote server. The entire architecture has been tested by implementing in an emergency situation and facilitated by an effective interoperable information exchange and spatio-temporal queries.


Author(s):  
Yasmina Maizi ◽  
Ygal Bendavid

With the fast development of IoT technologies and the potential of real-time data gathering, allowing decision makers to take advantage of real-time visibility on their processes, the rise of Digital Twins (DT) has attracted several research interests. DT are among the highest technological trends for the near future and their evolution is expected to transform the face of several industries and applications and opens the door to a huge number of possibilities. However, DT concept application remains at a cradle stage and it is mainly restricted to the manufacturing sector. In fact, its true potential will be revealed in many other sectors. In this research paper, we aim to propose a DT prototype for instore daily operations management and test its impact on daily operations management performances. More specifically, for this specific research work, we focus the impact analysis of DT in the fitting rooms’ area.


Robotica ◽  
2004 ◽  
Vol 22 (6) ◽  
pp. 661-679 ◽  
Author(s):  
J. Z. Pan ◽  
R. V. Patel

Sophisticated robotic applications require systems to be reconfigurable at the system level. Aiming at this requirement, this paper presents the design and implementation of a software architecture for a reconfigurable real-time multi-processing system for multi-robot control. The system is partitioned into loosely coupled function units and the data modules manipulated by the function units. Modularized and unified structures of the sub-controllers and controller processes are designed and constructed. All the controller processes run autonomously and intra-sub-controller information exchange is realized by shared data modules that serve as a data repository in the sub-controller. The dynamic data-management processes are responsible for data exchange among sub-controllers and across the computer network. Among sub-controllers there is no explicit temporal synchronization and the data dependencies are maintained by using datum-based synchronization. The hardware driver is constructed as a two-layered system to facilitate adaptation to various robotic hardware systems. A series of effective schemes for software fault detection, fault anticipation and fault termination are accomplished to improve run-time safety. The system is implemented cost-effectively on a QNX real-time operating system (RTOS) based system with a complete PC architecture, and experimentally validated successfully on an experimental dual-arm test-bed. The results indicate that the architectural design and implementation are well suited for advanced application tasks.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4941
Author(s):  
Kirti Gupta ◽  
Subham Sahoo ◽  
Bijaya Ketan Panigrahi ◽  
Frede Blaabjerg ◽  
Petar Popovski

The integration of variable distributed generations (DGs) and loads in microgrids (MGs) has made the reliance on communication systems inevitable for information exchange in both control and protection architectures to enhance the overall system reliability, resiliency and sustainability. This communication backbone in turn also exposes MGs to potential malicious cyber attacks. To study these vulnerabilities and impacts of various cyber attacks, testbeds play a crucial role in managing their complexity. This research work presents a detailed study of the development of a real-time co-simulation testbed for inverter-based MGs. It consists of a OP5700 real-time simulator, which is used to emulate both the physical and cyber layer of an AC MG in real time through HYPERSIM software; and SEL-3530 Real-Time Automation Controller (RTAC) hardware configured with ACSELERATOR RTAC SEL-5033 software. A human–machine interface (HMI) is used for local/remote monitoring and control. The creation and management of HMI is carried out in ACSELERATOR Diagram Builder SEL-5035 software. Furthermore, communication protocols such as Modbus, sampled measured values (SMVs), generic object-oriented substation event (GOOSE) and distributed network protocol 3 (DNP3) on an Ethernet-based interface were established, which map the interaction among the corresponding nodes of cyber-physical layers and also synchronizes data transmission between the systems. The testbed not only provides a real-time co-simulation environment for the validation of the control and protection algorithms but also extends to the verification of various detection and mitigation algorithms. Moreover, an attack scenario is also presented to demonstrate the ability of the testbed. Finally, challenges and future research directions are recognized and discussed.


2021 ◽  
Vol 73 (1) ◽  
pp. 152-160
Author(s):  
G. Balakayeva ◽  
◽  
Zh. Bazarbek ◽  

This work is devoted to the development of application modules for the enterprise management information system. The purpose of the research work is to increase the efficiency of information exchange. In order to implement a systematic approach, all the essential aspects of the object of research are comprehensively studied. When developing application modules for the enterprise management information system, MongoDB and .NET CORE. To simplify the exchange, preparation, and processing of data, enterprises created databases and used all possible functions. Two modules of the information system have been developed that allow managing the enterprise system-administrative and personnel. The automated system allows you to avoid many errors that occur in the process of data exchange under the influence of human factors. By storing data as savings, we can easily and quickly process and exchange information with multidimensional data.


2021 ◽  
Vol 13 (15) ◽  
pp. 8264
Author(s):  
Irena Jurdana ◽  
Nikola Lopac ◽  
Nobukazu Wakabayashi ◽  
Hongze Liu

Due to the ever-increasing amount of data collected and the requirements for the rapid and reliable exchange of information across many interconnected communication devices, land-based communications networks are experiencing continuous progress and improvement of existing infrastructures. However, maritime communications are still characterized by slow communication speeds and limited communication capacity, despite a similar trend of increasing demand for information exchange. These limitations are particularly evident in digital data exchange, which is still limited to relatively slow and expensive narrowband satellite transmission. Furthermore, with the increasing digitalization of ships and introducing the sustainable concept of autonomous ship operation, large amounts of collected data need to be transmitted in real-time to enable remote voyage monitoring and control, putting additional pressure on the already strained means of maritime communications. In this paper, an adaptive shipboard data compression method based on differential binary encoding is proposed for real-time maritime data transmission. The proposed approach is verified on the actual data collected on board a training ship equipped with the latest data acquisition system. The obtained results show that the proposed data encoding method efficiently reduces the transmitted data size to an average of 3.4% of the original shipboard data, thus significantly reducing the required data transmission rate. Moreover, the proposed method outperforms several other tested competing methods for shipboard data encoding by up to 69.6% in terms of compression efficiency. Therefore, this study suggests that the proposed data compression approach can be a viable and efficient solution for transmitting large amounts of digital shipboard data in sustainable maritime real-time communications.


Author(s):  
Gaurav Chaurasia ◽  
Arthur Nieuwoudt ◽  
Alexandru-Eugen Ichim ◽  
Richard Szeliski ◽  
Alexander Sorkine-Hornung

We present an end-to-end system for real-time environment capture, 3D reconstruction, and stereoscopic view synthesis on a mobile VR headset. Our solution allows the user to use the cameras on their VR headset as their eyes to see and interact with the real world while still wearing their headset, a feature often referred to as Passthrough. The central challenge when building such a system is the choice and implementation of algorithms under the strict compute, power, and performance constraints imposed by the target user experience and mobile platform. A key contribution of this paper is a complete description of a corresponding system that performs temporally stable passthrough rendering at 72 Hz with only 200 mW power consumption on a mobile Snapdragon 835 platform. Our algorithmic contributions for enabling this performance include the computation of a coarse 3D scene proxy on the embedded video encoding hardware, followed by a depth densification and filtering step, and finally stereoscopic texturing and spatio-temporal up-sampling. We provide a detailed discussion and evaluation of the challenges we encountered, as well as algorithm and performance trade-offs in terms of compute and resulting passthrough quality.;AB@The described system is available to users as the Passthrough+ feature on Oculus Quest. We believe that by publishing the underlying system and methods, we provide valuable insights to the community on how to design and implement real-time environment sensing and rendering on heavily resource constrained hardware.


2021 ◽  
Vol 28 (1) ◽  
pp. e100241
Author(s):  
Job Nyangena ◽  
Rohini Rajgopal ◽  
Elizabeth Adhiambo Ombech ◽  
Enock Oloo ◽  
Humphrey Luchetu ◽  
...  

BackgroundThe use of digital technology in healthcare promises to improve quality of care and reduce costs over time. This promise will be difficult to attain without interoperability: facilitating seamless health information exchange between the deployed digital health information systems (HIS).ObjectiveTo determine the maturity readiness of the interoperability capacity of Kenya’s HIS.MethodsWe used the HIS Interoperability Maturity Toolkit, developed by MEASURE Evaluation and the Health Data Collaborative’s Digital Health and Interoperability Working Group. The assessment was undertaken by eHealth stakeholder representatives primarily from the Ministry of Health’s Digital Health Technical Working Group. The toolkit focused on three major domains: leadership and governance, human resources and technology.ResultsMost domains are at the lowest two levels of maturity: nascent or emerging. At the nascent level, HIS activities happen by chance or represent isolated, ad hoc efforts. An emerging maturity level characterises a system with defined HIS processes and structures. However, such processes are not systematically documented and lack ongoing monitoring mechanisms.ConclusionNone of the domains had a maturity level greater than level 2 (emerging). The subdomains of governance structures for HIS, defined national enterprise architecture for HIS, defined technical standards for data exchange, nationwide communication network infrastructure, and capacity for operations and maintenance of hardware attained higher maturity levels. These findings are similar to those from interoperability maturity assessments done in Ghana and Uganda.


Sign in / Sign up

Export Citation Format

Share Document