Java 2 Micro Edition for Wireless Enterprise

Author(s):  
Kin Choong Yow ◽  
Nadia N. Moertiyoso

For the last couple of years, the wireless industry has been experiencing tremendous growth. Wireless devices have become more intelligent and are providing a new notion of communication. It is now possible to conduct business using the wireless network that will greatly improve the speed and quality of the business.

2015 ◽  
Vol 14 (6) ◽  
pp. 5809-5813
Author(s):  
Abhishek Prabhakar ◽  
Amod Tiwari ◽  
Vinay Kumar Pathak

Wireless security is the prevention of unauthorized access to computers using wireless networks .The trends in wireless networks over the last few years is same as growth of internet. Wireless networks have reduced the human intervention for accessing data at various sites .It is achieved by replacing wired infrastructure with wireless infrastructure. Some of the key challenges in wireless networks are Signal weakening, movement, increase data rate, minimizing size and cost, security of user and QoS (Quality of service) parameters... The goal of this paper is to minimize challenges that are in way of our understanding of wireless network and wireless network performance.


Author(s):  
Alexander Olave ◽  
Luis Felipe Valencia ◽  
Juan Carlos Cuéllar

Resumen Voz sobre IP, VoIP, es uno de los servicios con mayor desarrollo bajo plataformas inalámbricas; actualmente se ha iniciado su implementación como alternativa frente a la PSTN (red pública conmutada). El interés por VoIP radica en su relación costo-beneficio, ya que las organizaciones pueden utilizar la misma plataforma de su red de datos para transmitir voz. Por lo anterior, es importante que la organización tenga claro que, para garantizar el buen funcionamiento del servicio de VoIP, es decir para ofrecer QoS, se debe realizar la medición de parámetros que afectan la calidad del servicio como lo son: el retardo, la variación del retardo, el ancho de banda y la pérdida de paquetes. Este artículo analiza y valida los parámetros de QoS necesarios para garantizar el buen funcionamiento del servicio de VoIP sobre la red inalámbrica del campus de la Universidad Icesi. Se realizan pruebas en diferentes escenarios para mostrar que no solo factores como el retardo, y su variación, influyen en la calidad de servicio, sino que también la intensidad de la señal que recibe el cliente desde los puntos de acceso.Palabras Clave: Voz sobre IP, Calidad de servicio, Pérdida de paquetes, Retardo, Variación del Retardo, Intensidad de Señal. Abstract VoIP is one of the services that has been developing over under this type of wireless platforms and today has begun to implement as an alternative to the PSTN (Public Switched Telephone Network). The interest in VoIP is its cost-benefit ratio, and that organizations can use the same platform for their data network to transmit voice. Therefore it is important that the organization is clear that to ensure the smooth operation of the VoIP service, ie provide QoS, you must perform the measurement of parameters that affect the quality of service such as: delay, jitter, bandwidth, packet loss. In this paper we analyze and validate the QoS parameters needed to ensure the smooth operation of VoIP over wireless network on the Icesi University campus. We performed a series of tests in different scenarios to show that not only factors such as delay and jitter influencing the quality of service, but also the client signal strength received from of the AP (Access Point).Keywords: Voice over IP, Quality of service, Packet Loss, Delay, Delay variation, signal intensity.


10.2196/18636 ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. e18636 ◽  
Author(s):  
Jobbe P L Leenen ◽  
Crista Leerentveld ◽  
Joris D van Dijk ◽  
Henderik L van Westreenen ◽  
Lisette Schoonhoven ◽  
...  

Background Continuous monitoring of vital signs by using wearable wireless devices may allow for timely detection of clinical deterioration in patients in general wards in comparison to detection by standard intermittent vital signs measurements. A large number of studies on many different wearable devices have been reported in recent years, but a systematic review is not yet available to date. Objective The aim of this study was to provide a systematic review for health care professionals regarding the current evidence about the validation, feasibility, clinical outcomes, and costs of wearable wireless devices for continuous monitoring of vital signs. Methods A systematic and comprehensive search was performed using PubMed/MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials from January 2009 to September 2019 for studies that evaluated wearable wireless devices for continuous monitoring of vital signs in adults. Outcomes were structured by validation, feasibility, clinical outcomes, and costs. Risk of bias was determined by using the Mixed Methods Appraisal Tool, quality assessment of diagnostic accuracy studies 2nd edition, or quality of health economic studies tool. Results In this review, 27 studies evaluating 13 different wearable wireless devices were included. These studies predominantly evaluated the validation or the feasibility outcomes of these devices. Only a few studies reported the clinical outcomes with these devices and they did not report a significantly better clinical outcome than the standard tools used for measuring vital signs. Cost outcomes were not reported in any study. The quality of the included studies was predominantly rated as low or moderate. Conclusions Wearable wireless continuous monitoring devices are mostly still in the clinical validation and feasibility testing phases. To date, there are no high quality large well-controlled studies of wearable wireless devices available that show a significant clinical benefit or cost-effectiveness. Such studies are needed to help health care professionals and administrators in their decision making regarding implementation of these devices on a large scale in clinical practice or in-home monitoring.


With traffic increase in a wireless network beyond its capacity and as the number of connected devices continue to grow, the quality of service (QoS) degrades. In this paper we study the impact of mobility on throughput in the case of an infrastructure wireless network using IEEE 802.11 Wi-Fi standard. Since we found in the literature that the mobility of stations can have an impact on the quality of service, we try to remedy to this by implementing a new access category reserved for mobile stations. First we compare the throughput between static and mobile nodes, both connected to a QoS station. Then we propose our new model that consists of adding a new access category used by mobile nodes regardless of their traffic category. The study was made by simulating different scenarios using Network Simulator-3 (NS-3). We found that the throughput may vary depending on the simulation scenario. The simulation results show that with the proposed solution the mobile nodes can have a better throughput.


2021 ◽  
Vol 2 (2) ◽  
pp. 127-133
Author(s):  
Icha Nurlaela Khoerotunisa ◽  
Sofia Naning Hertiana ◽  
Ridha Muldina Negara

  Over the last decade, wireless devices have developed rapidly until predictions will develop with high complexity and dynamic. So that new capabilities are needed for wireless problems in this problem. Software Defined Network (SDN) is generally a wire-based network, but to meet the needs of users in terms of its implementation, it has begun to introduce a Wireless-based SDN called Software Defined Wireless Network (SDWN) which provides good service quality and reach and higher tools, so as to be able to provide new capabilities to wireless in a high complexity and very dynamic. When SDN is implemented in a wireless network it will require a routing solution that chooses paths due to network complexity. In this paper, SDWN is tested by being applied to mesh topologies of 4,6 and 8 access points (AP) because this topology is very often used in wireless-based networks. To improve network performance, Dijkstra's algorithm is added with the user mobility scheme used is RandomDirection. The Dijkstra algorithm was chosen because it is very effective compared to other algorithms. The performance measured in this study is Quality of Service (QoS), which is a parameter that indicates the quality of data packets in a network. The measurement results obtained show that the QoS value in this study meets the parameters considered by the ITU-T G1010 with a delay value of 1.3 ms for data services and packet loss below 0.1%. When compared with the ITU-T standard, the delay and packet loss fall into the very good category.


2019 ◽  
Vol 01 (02) ◽  
pp. 103-115
Author(s):  
Durai Pandian M

The spread out of wireless mesh network has made possible the extended range of communication network that are impractical due to environmental changes in a wired access point, these wireless mesh network does not require much competence to set it up as it can be set very fast at a cheap rate, and the conveyancing of messages in it happens by selecting the shortest path, these wireless mesh built-in with irrepressible and invulnerable identities come with an endurance to temporary congestion and individual node failure. This results in an architecture providing a better coverage, flaw indulgent with higher bandwidth compared to other wireless distributed systems. But faces the limitation on power conservation. The battery activated mesh nodes loses their resources on perception, processing and transmission of the data’s, though these batteries or accumulators comes with energy regaining capability still draw backs show up as their nature of energy regaining are unexposed. So the performance analysis of fly wireless network which proposes a uninterrupted wireless mesh networks aims at providing a best measure of performance that is the best quality of service on the meshwork by providing an improved energy gleaning using potency segregation (IGPS) which empowers each node to have self- contained accumulation of energy achieving heightened adaption with energy consumption kept at a minimum. The gross functioning of the proposed is examined on the bases of delay and packet loss to prove the quality of service acquired.


Author(s):  
Ashish Agarwal ◽  
Amar Gupta

A Wireless Grid is an augmentation of a wired grid that facilitates the exchange of information and the interaction between heterogeneous wireless devices. While similar to the wired grid in terms of its distributed nature, the requirement for standards and protocols, and the need for adequate Quality of Service; a Wireless Grid has to deal with the added complexities of the limited power of the mobile devices, the limited bandwidth, and the increased dynamic nature of the interactions involved. This complexity becomes important in designing the services for mobile computing. A grid topology and naming service is proposed which can allow self-configuration and self-administration of various possible wireless grid layouts.


Author(s):  
Sujatha V ◽  
E. A. Mary Anitha

Wireless networks are predictable to grant essential Internet access multimedia traffic service also increasingly such networks have been emerged in real life. However, the application scenarios is indeterminate as well as largely scalable routing is very difficult. Thus require efficient routing schemes in wireless network. In this paper, we propose Immensely Discriminate Routing protocol is used for multihop routing in wireless network. Here, node distance, node link, node trust and node quality of service is evaluated the next hop. This parameters are determined an efficient path in the wireless network.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1446 ◽  
Author(s):  
Liang Huang ◽  
Xu Feng ◽  
Luxin Zhang ◽  
Liping Qian ◽  
Yuan Wu

This paper studies mobile edge computing (MEC) networks where multiple wireless devices (WDs) offload their computation tasks to multiple edge servers and one cloud server. Considering different real-time computation tasks at different WDs, every task is decided to be processed locally at its WD or to be offloaded to and processed at one of the edge servers or the cloud server. In this paper, we investigate low-complexity computation offloading policies to guarantee quality of service of the MEC network and to minimize WDs’ energy consumption. Specifically, both a linear programing relaxation-based (LR-based) algorithm and a distributed deep learning-based offloading (DDLO) algorithm are independently studied for MEC networks. We further propose a heterogeneous DDLO to achieve better convergence performance than DDLO. Extensive numerical results show that the DDLO algorithms guarantee better performance than the LR-based algorithm. Furthermore, the DDLO algorithm generates an offloading decision in less than 1 millisecond, which is several orders faster than the LR-based algorithm.


Sign in / Sign up

Export Citation Format

Share Document