The Era Of Nanosatellites

Author(s):  
Juan Jorge Quiroga

Nowadays it is possible to achieve low cost and short production times space missions using satellites with a mass below 10 kg. These small satellites are described as nanosatellites. Current microelectronic technology makes it possible to develop nanosatellites for scientific experiments and relatively complex measurements (as well as for other applications) making it easy for universities and small research groups to have access to space science exploration and to exploit the new economic possibilities that emerge.This chapter, describes an experiment developed in Argentina at the Universidad Nacional del Comahue to design and construct a nanosatellite called Pehuensat-1.

Author(s):  
Juan Jorge Quiroga ◽  
Jorge Lassig ◽  
Darío Mendieta

Nowadays, it is possible to achieve low cost and short production times space missions using satellites with a mass below 10 kg. These small satellites are described as nanosatellites. Current microelectronic technology makes it possible to develop nanosatellites for scientific experiments and relatively complex measurements (as well as for other applications), making it easy for universities and small research groups to have access to space science exploration and to exploit the new economic possibilities that emerge. This paper describes an experiment developed in Argentina at the Universidad Nacional del Comahue to design, construct and flight test a nanosatellite called Pehuensat-1. Finally is presented to Pehuensat-2 as future commercial nano-satellite.


Author(s):  
David J. Barnhart ◽  
Tanya Vladimirova ◽  
Martin N. Sweeting

A new dimension of space mission architectures is emerging where hundreds to thousands of very small satellites will collectively perform missions in a distributed fashion. To support this architecture, high volume production of femto-scale satellites at low cost is required. This paper reviews current and emerging distributed space systems. A conceptual design of SpaceChip, which is a monolithic “satellite-on-a-chip” based on commercial CMOS technology is detailed. Assessment of the SpaceChip design is given and its use in future distributed space missions is discussed.


2018 ◽  
Vol 9 (1) ◽  
pp. 46-62 ◽  
Author(s):  
Brosnan Yuen ◽  
Mihai Sima

CubeSats are small satellites used for scientific experiments because they cost less than full sized satellites. Each CubeSat uses an on-board computer. The on-board computer performs sensor measurements, data processing, and CubeSat control. The challenges of designing an on-board computer are costs, radiation, thermal stresses, and vibrations. An on-board computer was designed and implemented to solve these challenges. The on-board computer used special components to mitigate radiation effects. Software was also used to provide redundancies in cases of faults. This paper may aid future spacecraft design as it improves the reliability of spacecraft, while keeping costs low.


Author(s):  
William R. Wilson ◽  
Laura L. Jones ◽  
Mason A. Peck

In the past several years, small satellites have taken on an increasingly important role as affordable technology demonstrators and are now being viewed as viable low-cost platforms for traditional spacecraft mission objectives. As such, the CubeSat standard (1 kg in a 10 cm cube) has been widely adopted for university-led development efforts even as it is embraced by traditional spacecraft developers, such as NASA. As CubeSats begin to take on roles traditionally filled by much larger spacecraft, the infrastructure for dynamics and controls testing must also transition to accommodate the different size and cost scaling associated with CubeSats. While air-bearing-based testbeds are commonly used to enable a variety of traditional ground testing and development for spacecraft, few existing designs are suitable for development of CubeSat-scale technologies, particularly involving multibody dynamics. This work describes Cornell University's FloatCube testbed, which provides a planar reduced-friction environment for multibody dynamics and controls technology development for spacecraft less than 6 kg and a 15 cm cube. The multimodule testbed consists of four free-floating air-bearing platforms with on-board gas supplies that allow the platforms to float over a glass surface without external attachments. Each of these platforms, or FloatCubes, can host CubeSat-sized payloads at widely ranging levels of development, from prototype components to full-scale systems. The FloatCube testbed has already hosted several successful experiments, proving its ability to provide an affordable reduced-friction environment to CubeSat-scale projects. This paper provides information on the system design, cost, performance, operating procedures, and applications of this unique, and increasingly relevant, testbed.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Francisco Miranda

In the last years the small satellites have played an important role in the technological development. The attractive short period of design and low cost of them and the capacity to solve problems that are usually considered as problems to big and expensive spacecrafts lead us to study the control problem of these satellites. Active three-axis magnetic attitude stabilization of a low Earth orbit satellite is considered in this work. The control is created by interaction between the magnetic moment generated by magnetorquers mounted on the satellite body and the geomagnetic field. This problem is quite complex and difficult to solve. To overcome this difficulty guidance control is considered, where we use ε-strategies introduced by Pontryagin in the frame of differential games theory. Qualitative analysis and results of numerical simulation are presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jorge Simon ◽  
Jorge Flores-Troncoso ◽  
Jose Luis Alvarez-Flores ◽  
Leonel Soriano-Equigua ◽  
Marco Cardenas-Juarez ◽  
...  

This article presents the design, fabrication, and measurement of a square Koch fractal slot antenna for UHF band using both the FR4-G10 and Cuclad 250 substrates. Conveniently, this 56.56 cm full-length antenna possesses a geometry that allows it to be incorporated into the standardized 10 cm × 10 cm faces of the CubeSats. Furthermore, it is shown that both selected substrates exhibit an acceptable performance at the frequency of interest despite the economic cost difference and relative permittivity. Hence, the commercial FR4-G10 antenna substrate can be preferred because of its low-cost and admissible performance at 458 MHz, which is a frequency in the UHF band that is commonly used for telemetry, tracking, and command downlinks of CubeSats. Measurements show that the proposed antenna exhibits a reflection coefficient of −16.53 dB, a bandwidth of 22.62 MHz at −10 dB, a VSWR of 1.3508, a normalized impedance of 0.794 − j0.173 at 50 Ω, and a directivity of 2.24 dBi. The contribution of this work consists in the use of a fractal geometry to construct a low-cost slot antenna working at UHF frequencies over the limited area of the CubeSat faces and in order to optimize the area for an eventual coexistence with solar cells.


Author(s):  
John Lee ◽  
Po-Hao Huang

The design of a novel micro-propulsion system for small satellites of the nano-satellites class (1–10kg) that is low-cost, non-toxic, non-flammable, and no-pressurized at launch conditions is currently being developed at the University of Arkansas. The goal of the present micro-propulsion system is to achieve milli-Newton thrust levels with specific impulses on the order of 100s. The proposed propellant is the water-propylene glycol. However, little data is available for its fluid and thermal characteristics at the gaseous state, nor the evolution of similar mixtures through micro/nano-channels. This paper will present experimental methods of measuring the mass flow rate of the water-glycol mixtures through micro/nano-channels. A MEMS fluidic chamber fabricated with a nano-channel is used to quantify the mass flow through optical tracking of liquid interfaces confined in the chamber. The dimensions of the channels are designed with the purpose to act as a passive throttling valve that prevent liquid-phase fluids from entering into the nozzle in order to achieve a simple water-based cold-gas propulsion system.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6819
Author(s):  
Brigida Alfano ◽  
Luigi Barretta ◽  
Antonio Del Giudice ◽  
Saverio De Vito ◽  
Girolamo Di Francia ◽  
...  

The concerns related to particulate matter’s health effects alongside the increasing demands from citizens for more participatory, timely, and diffused air quality monitoring actions have resulted in increasing scientific and industrial interest in low-cost particulate matter sensors (LCPMS). In the present paper, we discuss 50 LCPMS models, a number that is particularly meaningful when compared to the much smaller number of models described in other recent reviews on the same topic. After illustrating the basic definitions related to particulate matter (PM) and its measurements according to international regulations, the device’s operating principle is presented, focusing on a discussion of the several characterization methodologies proposed by various research groups, both in the lab and in the field, along with their possible limitations. We present an extensive review of the LCPMS currently available on the market, their electronic characteristics, and their applications in published literature and from specific tests. Most of the reviewed LCPMS can accurately monitor PM changes in the environment and exhibit good performances with accuracy that, in some conditions, can reach R2 values up to 0.99. However, such results strongly depend on whether the device is calibrated or not (using a reference method) in the operative environment; if not, R2 values lower than 0.5 are observed.


2019 ◽  
Vol 64 (8) ◽  
pp. 1466-1517 ◽  
Author(s):  
Robyn M. Millan ◽  
Rudolf von Steiger ◽  
Meir Ariel ◽  
Sergey Bartalev ◽  
Maurice Borgeaud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document