Pervasive and Interactive Use of Multimedia Contents via Multi-Technology Location-Aware Wireless Architectures

Author(s):  
Pasquale Pace ◽  
Gianluca Aloi

Nowadays, due to the increasing demands of the fast-growing Consumer Electronics (CEs) market, more powerful mobile consumer devices are being introduced continuously; thanks to this evolution of CEs technologies, many sophisticated pervasive applications start to be developed and applied to context and location aware scenarios. This chapter explores applications and a real world case-study of pervasive computing by means of a flexible communication architecture well suited for the interactive enjoyment of historical and artistic contents and built on top of a wireless network infrastructure. The designed system and the implemented low cost testbed integrate different communication technologies such as Wi-Fi, Bluetooth, and GPS with the aim of offering, in a transparent and reliable way, a mixed set of different multimedia and Augmented Reality (AR) contents to mobile users equipped with handheld devices. This communication architecture represents a first solid step to provide network support to pervasive context-aware applications pushing the ubiquitous computing paradigm into reality.

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
harry dhika ◽  
dicky kurnia putra

In order to enhance the user experience of virtual reality (VR) devices, VR multi-user environments and wireless connections must support as the latest generation of VRdevices. Wireless network-based wireless communication devices (WLANs) are popular consumer devices with high throughput and low cost using incompatible bands. However, the use of WLANs can cause packet delivery delays, due to their distributed nature when accessing channels. In this paper, we carefully discuss wireless VR via WLAN, and we request an efficient wireless multiuser VR communication architecture, as well as providing communication for VR. Because the architecture proposed in this paper uses many WLAN standards, based on the characteristics of each VR traffic chain, it is agreed that it supports the efficient sending of massive uplink data generated by several VR devices, and provides adequate frame rates and video control frames. rate for high-quality VR services. We conduct evaluations that are supported to improve exceptional applications than are supported


Author(s):  
P. Sudheer ◽  
T. Lakshmi Surekha

Cloud computing is a revolutionary computing paradigm, which enables flexible, on-demand, and low-cost usage of computing resources, but the data is outsourced to some cloud servers, and various privacy concerns emerge from it. Various schemes based on the attribute-based encryption have been to secure the cloud storage. Data content privacy. A semi anonymous privilege control scheme AnonyControl to address not only the data privacy. But also the user identity privacy. AnonyControl decentralizes the central authority to limit the identity leakage and thus achieves semi anonymity. The  Anonymity –F which fully prevent the identity leakage and achieve the full anonymity.


2021 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Claudia Campolo ◽  
Giacomo Genovese ◽  
Antonio Iera ◽  
Antonella Molinaro

Several Internet of Things (IoT) applications are booming which rely on advanced artificial intelligence (AI) and, in particular, machine learning (ML) algorithms to assist the users and make decisions on their behalf in a large variety of contexts, such as smart homes, smart cities, smart factories. Although the traditional approach is to deploy such compute-intensive algorithms into the centralized cloud, the recent proliferation of low-cost, AI-powered microcontrollers and consumer devices paves the way for having the intelligence pervasively spread along the cloud-to-things continuum. The take off of such a promising vision may be hurdled by the resource constraints of IoT devices and by the heterogeneity of (mostly proprietary) AI-embedded software and hardware platforms. In this paper, we propose a solution for the AI distributed deployment at the deep edge, which lays its foundation in the IoT virtualization concept. We design a virtualization layer hosted at the network edge that is in charge of the semantic description of AI-embedded IoT devices, and, hence, it can expose as well as augment their cognitive capabilities in order to feed intelligent IoT applications. The proposal has been mainly devised with the twofold aim of (i) relieving the pressure on constrained devices that are solicited by multiple parties interested in accessing their generated data and inference, and (ii) and targeting interoperability among AI-powered platforms. A Proof-of-Concept (PoC) is provided to showcase the viability and advantages of the proposed solution.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


Author(s):  
Jonas Austerjost ◽  
Robert Söldner ◽  
Christoffer Edlund ◽  
Johan Trygg ◽  
David Pollard ◽  
...  

Machine vision is a powerful technology that has become increasingly popular and accurate during the last decade due to rapid advances in the field of machine learning. The majority of machine vision applications are currently found in consumer electronics, automotive applications, and quality control, yet the potential for bioprocessing applications is tremendous. For instance, detecting and controlling foam emergence is important for all upstream bioprocesses, but the lack of robust foam sensing often leads to batch failures from foam-outs or overaddition of antifoam agents. Here, we report a new low-cost, flexible, and reliable foam sensor concept for bioreactor applications. The concept applies convolutional neural networks (CNNs), a state-of-the-art machine learning system for image processing. The implemented method shows high accuracy for both binary foam detection (foam/no foam) and fine-grained classification of foam levels.


2015 ◽  
Vol 24 (4) ◽  
pp. 298-321 ◽  
Author(s):  
Ernesto de la Rubia ◽  
Antonio Diaz-Estrella

Virtual reality has become a promising field in recent decades, and its potential now seems clearer than ever. With the development of handheld devices and wireless technologies, interest in virtual reality is also increasing. Therefore, there is an accompanying interest in inertial sensors, which can provide such advantages as small size and low cost. Such sensors can also operate wirelessly and be used in an increasing number of interactive applications. An example related to virtual reality is the ability to move naturally through virtual environments. This is the objective of the real-walking navigation technique, for which a number of advantages have previously been reported in terms of presence, object searching, and collision, among other concerns. In this article, we address the use of foot-mounted inertial sensors to achieve real-walking navigation in a wireless virtual reality system. First, an overall description of the problem is presented. Then, specific difficulties are identified, and a corresponding technique is proposed to overcome each: tracking of foot movements; determination of the user’s position; percentage estimation of the gait cycle, including oscillating movements of the head; stabilization of the velocity of the point of view; and synchronization of head and body yaw angles. Finally, a preliminary evaluation of the system is conducted in which data and comments from participants were collected.


2019 ◽  
Author(s):  
Ian R Kleckner ◽  
Mallory Feldman ◽  
Matthew Goodwin ◽  
Karen S. Quigley

Commercially available consumer electronics (smartwatches and wearable biosensors) are increasingly enabling acquisition of peripheral physiological and physical activity data inside and outside of laboratory settings. However, there is scant literature available for selecting and assessing the suitability of these novel devices for scientific use. To overcome this limitation, the current paper offers a framework to aid researchers in choosing and evaluating wearable technologies for use in empirical research. Our seven-step framework includes: (1) identifying signals of interest; (2) characterizing intended use cases; (3) identifying study-specific pragmatic needs; (4) selecting devices for evaluation; (5) establishing an assessment procedure; (6) performing qualitative and quantitative analyses on resulting data; and, if desired, (7) conducting power analyses to determine sample size needed to more rigorously compare performance across devices. We illustrate the application of the framework by comparing electrodermal, cardiovascular, and accelerometry data from a variety of commercial wireless sensors (Affectiva Q, Empatica E3, Empatica E4, Actiwave Cardio, Shimmer) relative to a well-validated, wired Mindware laboratory system. Our evaluations are performed in two studies (N=10, N=11) involving psychometrically sound, standardized tasks that include physical activity and affect induction. After applying our framework to this data, we conclude that only some commercially available consumer devices for physiological measurement are capable of wirelessly measuring peripheral physiological and physical activity data of sufficient quality for scientific use cases. Thus, the framework appears to be beneficial at suggesting steps for conducting more systematic, transparent, and rigorous evaluations of mobile physiological devices prior to deployment in studies.


Author(s):  
Jagdish Chandra Patni

Powerful computational capabilities and resource availability at a low cost is the utmost demand for high performance computing. The resources for computing can viewed as the edges of an interconnected grid. It can attain the capabilities of grid computing by balancing the load at various levels. Since the nature of resources are heterogeneous and distributed geographically, the grid computing paradigm in its original form cannot be used to meet the requirements, so it can use the capabilities of the cloud and other technologies to achieve the goal. Resource heterogeneity makes grid computing more dynamic and challenging. Therefore, in this article the problem of scalability, heterogeneity and adaptability of grid computing is discussed with a perspective of providing high computing, load balancing and availability of resources.


Author(s):  
Paul Fergus

The number of consumer devices that are being equipped with networking capabilities is increasing rapidly. This is seen as a fundamental strategy within the consumer electronics domain where failure to provide such support may result in a considerable loss in market share. As end users become more comfortable with the idea of networking the devices they own, there will be a need to allow the heterogeneous devices they own to seamlessly work together irrespective of their capabilities or conventional usage scenarios. Addressing this challenge means that next generation mobile multimedia will be highly multidisciplinary where advances from many research domains will be included. In parallel, users will be empowered where they will not only be able to generate user content, but also interact with it. Content itself will become increasingly more influenced by the environment, where new technologies, such as sensor networks, will play a significant part. Social networks and immersive environments are commonplace, where users now choose to socialise within these environments. Many mobile multimedia solutions will capitalise on the benefits social networking technologies provide to help change the face of next generation mobile multimedia, where real-time interaction with content at anytime and anyplace will become standard. In this chapter we provide a discussion on the state-of-the-art research initiatives that are trying to address these challenges. A discussion is presented on some of the more recent background work and a view of what future mobile multimedia might look like. Throughout the discussion we present the challenges faced by many research communities and the likely trends that will emerge given such challenges.


Sign in / Sign up

Export Citation Format

Share Document