Industrial Exoskeletons With Gravity Compensation Elements

Author(s):  
Sergey Fedorovich Jatsun ◽  
Andrey Yatsun

The chapter approaches the issues of modeling the process of load lifting by a person while wearing an exoskeleton. The classification of existing gravitational compensation systems for industrial exoskeletons is shown, as well as examples of its use. A mathematical model of lifting a person's load in the exoskeleton is presented, as well as numerical parameters are calculated. It is shown that the introduction of an elastic element reduces the level of energy consumption during work, and can also facilitate the level of the worker. Industrial exoskeleton prototype design is presented. A particular focus is given to studying the influence of the gravity compensator on the magnitude of the moments generated by the electric drives of the hip and knee joints. It is shown that the use of gravity compensators enables to reduce significantly the load on electric drives.

Author(s):  
Sergey Fedorovich Jatsun ◽  
Andrey Yatsun

The chapter approaches the issues of modeling the process of load lifting by a person while wearing an exoskeleton. The classification of existing gravitational compensation systems for industrial exoskeletons is shown, as well as examples of its use. A mathematical model of lifting a person's load in the exoskeleton is presented, as well as numerical parameters are calculated. It is shown that the introduction of an elastic element reduces the level of energy consumption during work, and can also facilitate the level of the worker. Industrial exoskeleton prototype design is presented. A particular focus is given to studying the influence of the gravity compensator on the magnitude of the moments generated by the electric drives of the hip and knee joints. It is shown that the use of gravity compensators enables to reduce significantly the load on electric drives.


2019 ◽  
Vol 23 (2) ◽  
pp. 8-17 ◽  
Author(s):  
S. F. Yatsun ◽  
V. M. Antipov ◽  
A. Ye. Karlov ◽  
M. Al Manji Hamil Hamed

Purpose of research. Currently, exoskeletons are getting widespread use. They enhance human capabilities in terms of ease of movement, carrying loads and different types of activities that require considerable effort. Especially effective are those exoskeletons that make it possible to make complex types of movement of both for the lower and upper limbs, which significantly expands the capabilities of a person when performing loading and unloading operations. Relatively recently, they have started the development of exoskeletons which use the elements of gravity compensation. Therfore, the study of energy costs in the process of load lifting and the study of gravitational compensators influence on the magnitude of moments made by the electric drives of the femoral and knee joints, is relevant and is revealed in this paper.Methods. Methods of system analysis, design of biotechnical systems, control theory, theory of mechanisms and machines, methods of mathematical modeling of dynamic systems, methods of optimal planning and design were used to solve the problems. Mathematical packages Matlab/Simulink were used to make software products.Results. The study shows that the use of gravity compensators can significantly reduce the load on electrodrives. The movement of load is due to the operation of engines located in the area of ankle, knee and thigh joints. Since the movement of the exoskeleton occurs in the sagittal plane during load lifting, the position of the exoskeleton links in space is determined by four independent parameters.Conclusion. The mathematical model of load lifting by a man in an exoskeleton has been developed. Mathematical modeling of the process of load lifting with the help of exoskeleton electric drives has been made. A special attention is paid to the study of gravitational compensators influence on the magnitude of moments created by the electric drives of femoral and knee joints. It shows that the use of gravity compensators can significantly reduce the load on electric drives. Also, the study of energy costs in the process of load lifting has been conducted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liane Bernstein ◽  
Alexander Sludds ◽  
Ryan Hamerly ◽  
Vivienne Sze ◽  
Joel Emer ◽  
...  

AbstractAs deep neural network (DNN) models grow ever-larger, they can achieve higher accuracy and solve more complex problems. This trend has been enabled by an increase in available compute power; however, efforts to continue to scale electronic processors are impeded by the costs of communication, thermal management, power delivery and clocking. To improve scalability, we propose a digital optical neural network (DONN) with intralayer optical interconnects and reconfigurable input values. The path-length-independence of optical energy consumption enables information locality between a transmitter and a large number of arbitrarily arranged receivers, which allows greater flexibility in architecture design to circumvent scaling limitations. In a proof-of-concept experiment, we demonstrate optical multicast in the classification of 500 MNIST images with a 3-layer, fully-connected network. We also analyze the energy consumption of the DONN and find that digital optical data transfer is beneficial over electronics when the spacing of computational units is on the order of $$>10\,\upmu $$ > 10 μ m.


2021 ◽  
Vol 40 (4) ◽  
pp. 8493-8500
Author(s):  
Yanwei Du ◽  
Feng Chen ◽  
Xiaoyi Fan ◽  
Lei Zhang ◽  
Henggang Liang

With the increase of the number of loaded goods, the number of optional loading schemes will increase exponentially. It is a long time and low efficiency to determine the loading scheme with experience. Genetic algorithm is a search heuristic algorithm used to solve optimization in the field of computer science artificial intelligence. Genetic algorithm can effectively select the optimal loading scheme but unable to utilize weight and volume capacity of cargo and truck. In this paper, we propose hybrid Genetic and fuzzy logic based cargo-loading decision making model that focus on achieving maximum profit with maximum utilization of weight and volume capacity of cargo and truck. In this paper, first of all, the components of the problem of goods stowage in the distribution center are analyzed systematically, which lays the foundation for the reasonable classification of the problem of goods stowage and the establishment of the mathematical model of the problem of goods stowage. Secondly, the paper abstracts and defines the problem of goods loading in distribution center, establishes the mathematical model for the optimization of single car three-dimensional goods loading, and designs the genetic algorithm for solving the model. Finally, Matlab is used to solve the optimization model of cargo loading, and the good performance of the algorithm is verified by an example. From the performance evaluation analysis, proposed the hybrid system achieve better outcomes than the standard SA model, GA method, and TS strategy.


2011 ◽  
Vol 314-316 ◽  
pp. 2071-2075
Author(s):  
Jia Hai Wang ◽  
Wen Tao Gong

Discrete machine manufacture enterprises have to induce new low-carbon manufacturing model in order to solve a dilemma of mutual restraint between development and electric energy consumption. The paper presents an approach to solve JSP with the objective of minimizing the energy consumption by shortening the distance between electricity peak and valley according to theory of load shifting in electricity. The mathematical model is proposed for JSP with objective of minimizing the energy consumption and processing time of entire batch, then the idea of time division is introduced, and a solving method based on GA built-in eM-Plant is employed to verify the model and get satisfactory scheduling results.Discrete machine manufacture enterprises have to induce new low-carbon manufacturing model in order to solve a dilemma of mutual restraint between development and electric energy consumption. The paper presents an approach to solve JSP with the objective of minimizing the energy consumption by shortening the distance between electricity peak and valley according to theory of load shifting in electricity. The mathematical model is proposed for JSP with objective of minimizing the energy consumption and processing time of entire batch, then the idea of time division is introduced, and a solving method based on GA built-in eM-Plant is employed to verify the model and get satisfactory scheduling results.


2021 ◽  
Vol 3 (44) ◽  
pp. 111-115
Author(s):  
Tat’yana R. Gallyamova ◽  

When developing modern lighting technologies for objects of the agro-industrial complex, the problem arises of assessing the contribution of reflected light to the normalized illumination. The reflective properties of the surfaces of materials are characterized by a reflection coefficient ρ, which reaches a value of 0.7. This allows us to consider the reflective surfaces as an additional light source and the possibility of reducing energy consumption costs. (Research purpose) The research purpose is in developing a mathematical model that allows us to estimate the spectral reflection coefficient ρ(λ) of materials of construction technologies of the agro-industrial complex in the ultraviolet and visible spectral regions. (Materials and methods) That the disadvantage of various models is the lack of an analytical method for calculating the reflection coefficient in a wide range of wavelengths. We used a probabilistic method to overcome this disadvantage. (Results and discussion) The developed mathematical model makes it possible to estimate the reflection coefficient of the rough surface of materials in a wide range of the spectrum. For concrete, the area of agreement between theory and experiment is in the wavelength range from 250 to 1000 nm. The saturation mode predicted by the theory (the independence of the reflection coefficient from the wavelength) at a reflection coefficient of 0.4 is consistent with the experimental values in the visible range of the spectrum for construction materials of the agro-industrial complex, in particular, gray textured concrete, gray facade paint, light wood, gray silicate brick, new plaster without whitewash. (Conclusions) In the case of normal light incidence, the developed mathematical model allows us to theoretically estimate the reflection coefficient of the rough surfaces of construction technologies of the agro-industrial complex. The proposed model can be used in the development and design of a system of technological lighting of large-area premises (for example, when keeping birds on the floor), as well as for developing recommendations for reducing the energy consumption of existing lighting systems.


2018 ◽  
Vol 37 (12) ◽  
pp. 1403-1410 ◽  
Author(s):  
Diego Pastor ◽  
María Campayo-Piernas ◽  
Jesús Tadeo Pastor ◽  
Raul Reina

2011 ◽  
Vol 130-134 ◽  
pp. 1725-1729
Author(s):  
Ye Jian Yang ◽  
Ze Yi Jiang ◽  
Xin Xin Zhang ◽  
Peng Jin

With the aim of minimizing the energy consumption cost and taking the billet heating quality as the constraint condition, a mathematical model was established based on the billet heating model to solve the optimum heat institution of the reheating furnace. The tabu search algorithm was employed to solve the model. The results of the industrial production data optimization showed that the proposed mathematical model and the solving method could fully meet the practical production demand of the reheating furnace. In addition to satisfying the heating quality requirements, the energy consumption is reduced and the oxidation loss is decreased. Compared with the original one, the heating institution obtained from the mentioned model and algorithm had a better performance on energy efficiency.


Author(s):  
V. Y. Stepanov

The article gives a classification of the main components of unmanned aerial vehicle (UAV) systems, gives the areas in which the application of UAVs is actual in practice today. Further, the UAV is considered in more detail from the point of view of its flight dynamics analysis, the equation necessary for creating a mathematical model, as well as the model of an ordinary dynamic system as a non-stationary nonlinear controlled object, is given. Next, a description of the developed software for modeling and a description of program algorithm are given. Finally, a conclusion describes the necessary directions for further scientific researches.


Sign in / Sign up

Export Citation Format

Share Document