Corrosion Protection of Construction Steel

Author(s):  
Arkadeb Mukhopadhyay ◽  
Sarmila Sahoo

Reinforced concrete is one of the most versatile materials for construction. In spite of this, the performance is limited by corrosion, cracking, and spalling of the steel rebars. The steel embedded in the concrete is protected by a passive film from the corrosive attack of chlorides, carbon dioxide, and sulphates. As the concentration of chlorides, carbon dioxide, or sulphates increases above a certain threshold value at the concrete rebar interface, the passive film breaks and leads to a severe increase in the corrosion rate. Further, dynamic loading and the temperature of the surroundings also affect the durability of the reinforcements. The rebar may be protected from such a corrosion attack by the suitable selection of material, improving the concrete quality and tailoring its composition or application of protective coatings. The present chapter highlights and summarizes the different grades of steel for their high corrosion resistance. Further, surface engineering and application of corrosion resistance coatings for the prevention of corrosion of construction steel rebars has been also discussed elaborately.

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Srinivasa B. Rao ◽  
Ramesh Chowdhary

Dental casting alloys are widely used in contact with oral tissue for many years now. With the development of new dental alloys over the past 15 years, many questions remain unanswered about their biologic safety. Concepts and current issues concerning the response to the biologic effects of dental casting alloys are presented. In this paper, samples of three commercially available nickel-chrome (Ni-cr) casting alloys (Dentaurum, Bego, Sankin) were taken to assess their corrosion behavior, using potentiodynamic polarization method (electrochemical method) with fusayama artificial saliva as an electrolyte medium to check for their biocompatibility. The parameters for corrosion rate and corrosion resistance were obtained from computer-controlled corrosion schematic instrument, namely, potentiostat through corrosion software (power CV). The results obtained were analyzed by classic Tafel analysis. Statistical analysis was done by Student's -test and ANOVA test. It was concluded that Dentarum and Bego showed satisfactory corrosive behavior, with exception of Sankin which depicted higher corrosion rate and least resistance to corrosion. Thus, the selection of an alloy should be made on the basis of corrosion resistance and biologic data from dental manufactures.


2013 ◽  
Vol 794 ◽  
pp. 575-582 ◽  
Author(s):  
S. Ningshen ◽  
M. Sakairi ◽  
K. Sukuki ◽  
S. Ukai

An oxide dispersion strengthened steels are one of the most promising high temperatures, and high performance advanced structural material being developed for future fast reactors and high-temperature Generation IV reactors. In the present work, the corrosion resistance and its correlation with the passive film compositions of 11% Cr F/M and 9-15% Cr (with Zr or Hf) ODS steels is examined and compared with AISI type 304L stainless steel in boiling 60 - 62% (~13 M) HNO3. The corrosion rate measured in 62% HNO3 for 240 h of 11% Cr F/M, 9% Cr and 15% Cr (Zr) ODS steels show high corrosion rate. On the other hand, low corrosion rate was observed in 304L stainless steel (0. 21 to 23 mm y-1). However, severe intergranular corrosion attack was revealed in type 304L SS after 240 h exposure, but none in ODS steels. Such an intergranular corrosion attack seen in type 304L stainless steel is undesirable. On the contrary, low corrosion rate (0.04 0.15 mm y-1) of 15% Cr (Hf) ODS steel in 3 M, 6 M and 9 M HNO3, comparable to that of type 304L stainless steel was observed. The improved corrosion resistance of 15% Cr (Hf) ODS steel was attributed to enrich (20 at. %) and protective Al2O3 layer formation in addition to Cr2O3 in the passive film.


Coatings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 257 ◽  
Author(s):  
Amirhossein Mahdavi ◽  
Eugene Medvedovski ◽  
Gerardo Mendoza ◽  
André McDonald

In this study, the high-temperature molten salt corrosion resistance of bare steels and steels with protective coatings, fabricated by thermal diffusion processes (boronizing, aluminizing and chromizing), were investigated and compared. Surface engineering through thermal diffusion can be used to fabricate protective coatings against corrosion, while alleviating issues around possible cracking and spallation that is typical for conventional thermal-sprayed coatings. In this regard, samples of low carbon steel and 316 stainless steel substrates were boronized, chromized, and aluminized through a proprietary thermal diffusion process, while some of the samples were further coated with additional thin oxide and non-oxide layers to create new surface architectures. In order to simulate the actual corrosion conditions in recovery boilers (e.g., from black liquor combustion), the surfaces of the samples sprayed with a modeling salt solution, were exposed to low-temperature (220 ∘C) and high-temperature (600 ∘C) environments. According to microstructural and X-ray diffraction (XRD) studies and results of hardness determination, the coatings with multilayered architectures, with and without additional oxide layers, showed successful resistance to corrosive attack over bare steels. In particular, the samples with boronized and chromized coatings successfully withstood low-temperature corrosive attack, and the samples with aluminized coatings successfully resisted both low- and high-temperature molten salt corrosive attacks. The results of this study conducted for the first time for the thermal diffusion coatings suggest that these coatings with the obtained architectures may be suitable for surface engineering of large-sized steel components and tubing required for recovery boilers and other production units for pulp and paper processing and power generation.


2021 ◽  
Vol 225 ◽  
pp. 05003
Author(s):  
Oleg Shvetsov ◽  
Sergey Kondrat’ev

The paper investigates wear resistance and corrosion resistance of protective coatings of D16 aluminum alloy under conditions that simulate operation of drill pipes. The paper also presents microstructure of coatings, electrochemical potential and corrosion rate of D16 aluminum alloy with various coatings. We evaluated adhesion and wear resistance of these coatings. D16 alloy with a tungsten carbide coating has the widest range of service properties and can be used to effectively protect the surface of aluminum drill pipes during operation operation.


2021 ◽  
Vol 55 (4) ◽  
Author(s):  
Ningning Li ◽  
Guang Chen ◽  
Guoyuan Sun ◽  
Xinhua Qi

The static corrosion behavior of a Fe-Al layer was investigated with an immersion test in seawater, using XRD and SEM with EDS, testing the corrosion rate. The results showed that phases -Al2O3, Fe2O3 and MgO were the main corrosion products on the Fe-Al layer surface, while corrosion pits and holes were also observed. It was found that the Fe-Al layer fabricated at 750 °C exhibits a better corrosion resistance, having smaller corrosion pits and holes and also a low corrosion rate. This was related to a good formation ability of the alumina passive film.


Author(s):  
O.V. Shvetsov ◽  
S.Yu. Kondrat'ev ◽  
B.A. Shemyakinsky

The effect of protective coatings on the wear resistance and corrosion resistance of the 2024 aluminium alloy used for the oil drill pipes producing is studied. The nature of the drill pipes damage made of aluminium alloys during operation is analyzed. The microstructure of the coatings, the electrochemical potential and corrosion rate of the 2024 aluminium alloy with and without coatings of various compositions are studied, and comparative analysis of the adhesion and wear resistance of coatings is performed. It is shown that tube billet made of 2024 alloy with сoating based on tungsten carbide has the highest range of service properties and can be used to effectively protect the surface of aluminium drill pipes during operation.


Alloy Digest ◽  
1978 ◽  
Vol 27 (9) ◽  

Abstract UNIFLUX 70 is a continuous flux-cored welding electrode (wire) for welding in carbon dioxide shielding gas in the flat groove and horizontal fillet positions. It is used widely in shipbuilding and other fabricating industries to weld carbon steel and provides around 82,000 psi tensile strength and around 50 foot-pounds Charpy V-notch impact at 0 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: CS-74. Producer or source: Unicore Inc., United Nuclear Corporation.


Alloy Digest ◽  
1963 ◽  
Vol 12 (8) ◽  

Abstract Cooper Alloy 22W is a high strength, heat resistant casting alloy with a low creep rate. It is recommended for heat applications where stress and hot gas corrosion rate are very high. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: SS-146. Producer or source: Cooper Alloy Corporation.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 929
Author(s):  
Dandan Liang ◽  
Jo-Chi Tseng ◽  
Xiaodi Liu ◽  
Yuanfei Cai ◽  
Gang Xu ◽  
...  

This study investigated the structural heterogeneity, mechanical property, electrochemical behavior, and passive film characteristics of Fe–Cr–Mo–W–C–B–Y metallic glasses (MGs), which were modified through annealing at different temperatures. Results showed that annealing MGs below the glass transition temperature enhanced corrosion resistance in HCl solution owing to a highly protective passive film formed, originating from the decreased free volume and the shrinkage of the first coordination shell, which was found by pair distribution function analysis. In contrast, the enlarged first coordination shell and nanoscale crystal-like clusters were identified for MGs annealed in the supercooled liquid region, which led to a destabilized passive film and thereby deteriorated corrosion resistance. This finding reveals the crucial role of structural heterogeneity in tuning the corrosion performance of MGs.


Sign in / Sign up

Export Citation Format

Share Document