Improved Design and Optimization of IIR Filters by Cascading of ABC, PSO, and CA

Author(s):  
Yogesh Dabas ◽  
Neetu Agrawal

This chapter presents a technique for the design and optimization of the IIR filters by cascading the nature-inspired algorithms including ABC, PSO, and CA. All these algorithms are applied in Low Pass IIR filter and High Pass IIR filter to obtain the optimized filter coefficients so as to minimize the difference between an ideal magnitude response and the desired magnitude response. Finally, IIR filter magnitude response curves and the achieved fitness values for ABC, PSO, and CA are compared to that of the cascaded approach.

2002 ◽  
Vol 45 (6) ◽  
pp. 1297-1310 ◽  
Author(s):  
Judy R. Dubno ◽  
Jayne B. Ahlstrom ◽  
Amy R. Horwitz

Speech recognition in noise improves when speech and noise sources are separated in space. This benefit has two components whose effects are strongest in different frequency regions: (1) interaural level differences (e.g., head shadow), which are largest at higher frequencies, and (2) interaural time differences, which have their greatest contribution at lower frequencies. Binaural interactions enhance the separation of signals from noise through the use of these interaural differences. Here, the benefit attributable to spatial separation was measured as a function of the low- and high-pass cutoff frequency of speech and noise. Listeners were younger adults with normal hearing, older adults with normal hearing, and older adults with hearing loss. Binaural thresholds for narrowband noises were measured in quiet and in a speech-shaped masker as a function of masker low-pass cutoff frequency. Speech levels corresponding to 50% correct recognition of sentences from the Hearing in Noise Test (HINT) were measured in a 65-dB SPL speech-shaped noise. Thresholds for narrowband noises and for speech were measured with two loudspeaker configurations: (1) signals and speech-shaped noise at 0° azimuth (in front of the listener) and (2) signals at 0° azimuth and speech-shaped noise at 90° azimuth (at the listener's side). The criterion measure was spatial separation benefit, or the difference in thresholds for the two conditions. Benefit of spatial separation for unfiltered speech averaged 6.1 dB for younger listeners with normal hearing, 4.9 dB for older listeners with normal hearing, and 2.7 dB for older listeners with hearing loss. Benefit was differentially affected by low-pass and high-pass filtering, suggesting a trade-off of the contributions of higher frequency interaural level differences and lower frequency interaural timing cues. As expected, older listeners with hearing loss benefited little from the improved signal-to-noise ratios in the higher frequencies resulting from head shadow, but showed some benefit from lower frequency cues. Spatial benefit for older listeners with normal hearing was reduced relative to benefit for younger listeners. This result may be related to older listeners' elevated thresholds at frequencies above 6.0 kHz.


Author(s):  
K.R. Shankarkumar ◽  
Gokul Kumar

: Filtering is an important step in the field of image processing to suppress the required parts or to remove any artifacts present in it. There are different types of filters like low pass, high pass, Band pass, IIR, FIR and adaptive filtering etc.., in these filters adaptive filters is an important filter because it is used to remove the noisy signal and images. Least Mean Square filter is a type of an adaptive filtering which is used to remove the noises present in the medical images. The working of LMS is based on the minimization of the difference between the error images using a closed loop feedback. Therefore presented technique called as Q-CSKA. Here the CSKA performs its operation in stages which is based on the nucleus stage. In the traditional CSKA the nucleus stage is depend on the parallel prefix adder in this work it is replaced by the QCA adder. The QCA adder utilizes the less area compared to PPA and it can be realized in Nanometer range also. For multiplexers, And OR Invert, OR and Invert logic is used to reduce the area and delay. Due to these advantages of the QCA, AOI-OAI logic the proposed method outperformed the LMS implementation in area, power, and accuracy and delay, this based five type image noise of medical pictures related to the best technique is out comes. It helps to medicinal practitioner to resolve the symptoms of patient with ease.


2007 ◽  
Vol 16 (04) ◽  
pp. 507-516 ◽  
Author(s):  
SHAHRAM MINAEI ◽  
ERKAN YUCE

In this paper, a universal current-mode second-order active-C filter for simultaneously realizing low-pass, band-pass and high-pass responses is proposed. The presented filter employs only three plus-type second-generation current-controlled conveyors (CCCII+s). This filter needs no critical active and passive component matching conditions and no additional active and passive elements for realizing high output impedance low-pass, band-pass and high-pass characteristics. The angular resonance frequency (ω0) and quality factor (Q) of the proposed resistorless filter can be tuned electronically. To verify the theoretical analysis and to exhibit the performance of the proposed filter, it is simulated with SPICE program.


2018 ◽  
Vol 72 ◽  
pp. 96-114 ◽  
Author(s):  
Shibendu Mahata ◽  
Suman Kumar Saha ◽  
Rajib Kar ◽  
Durbadal Mandal

2005 ◽  
Vol 14 (01) ◽  
pp. 159-164 ◽  
Author(s):  
SUDHANSHU MAHESHWARI ◽  
IQBAL A. KHAN

A novel voltage-mode universal filter employing only two current differencing buffered amplifiers (CDBAs) is proposed. The filter uses four inputs and single output to realize six responses, viz. low-pass, high-pass, inverting band-pass, noninverting band-pass, band-elimination, and all-pass through input selection with independent pole-Q control. Computer simulation results using SPICE are also given to verify the theory.


1949 ◽  
Vol 16 (3) ◽  
pp. 310-316
Author(s):  
Joseph B. Woodson

Abstract This paper presents an analysis of the dynamic response of an undamped mechanical system with one degree of freedom subjected to disturbances which are described by antisymmetric forcing functions. The analysis was undertaken to throw light on the effect on the vibration of the wings caused by unsymmetric landing impact of an airplane. Two types of disturbances are considered; a full-sine-wave pulse, and a pulse which is the difference between two overlapping half sine waves. The results are presented in the form of dynamic-response curves and dynamic-response-factor curves. The numerically greatest dynamic-response factors, approximately 3.24 and −3.26, resulted for a full-sine-wave pulse disturbance with a ratio of duration of impact to natural period, Ti/T ≅ 1.11. When Ti/T is in the neighborhood of 1, the first positive peak of dynamic response is numerically less than the negative and positive peaks which follow it. For much of the range, the positive and negative dynamic-response factors are numerically approximately equal. The analysis was confined to values of Ti/T between 0.33 and 12. As Ti/T increases without limit, the positive and negative dynamic-response factors tend to 1 and −1, respectively.


1991 ◽  
Vol 65 (3) ◽  
pp. 424-445 ◽  
Author(s):  
A. S. Feng ◽  
J. C. Hall ◽  
S. Siddique

1. Physiological recordings were made from single auditory fibers in the frog eighth nerve to determine quantitatively how the different behaviorally relevant temporal parameters (the signal rise-fall time, duration, and rate of amplitude modulation) of complex sounds are encoded in the auditory periphery. Individual temporal parameters were varied. Response functions (RFs) were constructed with respect to each of these parameters using each unit's best excitatory frequency (BF) as the carrier. 2. In response to a change in signal rise-fall time, auditory nerve fibers showed little change in the mean spike count or firing rate, i.e., all fibers displayed ALL-PASS RFrfts. But the transient components, particularly the early phasic component, of responses varied with rise-fall times; these components were more pronounced in the responses to stimuli with shorter rise-fall times. 3. In response to an increase in signal duration, auditory nerve fibers showed a corresponding increase in firing duration and thus in the mean spike count, giving rise to HIGH-PASS RFdurs. The shape of response curves differed among fibers; the difference appeared to be related to the fiber's temporal adaptation characteristic. When the firing rate was measured, all fibers displayed higher mean firing rates in response to shorter duration stimuli than they did to longer duration stimuli, thus giving rise to LOW-PASS response functions. 4. To determine the response transfer functions to modulation rate, pulsed (PAM) and sinusoidally (SAM) amplitude-modulated signals were used. These signals differed substantially in terms of their envelopes and how they varied with AM rate. Data were analyzed by 1) plotting spike counts against the AM rate to derive modulation transfer functions (MTFspks) and 2) plotting synchronization coefficients (SCs) against the AM rate to generate MTFscs. 5. In response to PAM stimuli, all fibers showed an increase in mean spike count with modulation frequency over the range examined, giving rise to HIGH-PASS MTFspks. 6. For SAM stimuli, the average energy and duty cycle are independent of AM rate. Most (79%) auditory fibers showed little selectivity for AM rate over a range of 5-400 Hz, giving rise to ALL-PASS MTFspks. The remaining auditory fibers displayed LOW-PASS MTFspks, i.e., there was a distinct decline in the mean spike count with increasing AM rate. 7. In response to PAM stimuli, most fibers showed good response synchrony at low AM rates but the SC declined with an increase in the AM rate (i.e., LOW-PASS MTFscs). The cut-off frequency was typically very high, averaging 90 pulses/s.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Darine Kaddour ◽  
Jean-Daniel Arnould ◽  
Philippe Ferrari

In this paper, a miniaturized bandpass filter for ultra-wide-band applications is proposed. It is based on the embedding of high-pass structures in a low-pass filter. A semi-lumped technology combining surface-mounted capacitors and transmission lines has been used. The filter design rules have been carried out. Furthermore, two filters having a 3-dB fractional bandwidth of 142 and 150%, centered at 0.77 and 1 GHz, respectively, have been realized for a proof of concept. Measured characteristics, in good agreement with simulations, show attractive properties of return loss (|S11| <−18 dB), insertion loss (<0.3 dB), and a maximum group delay and group delay variation of 2 and 1.3 ns, respectively. A distributed filter based on the same low-pass/high-pass approach has been also realized and measured for comparison. The size reduction reaches 85% for the semi-lumped filter, and its selectivity is improved with a shape factor of 1.3:1 instead of 1.5:1. The semi-lumped filter's drawback is related to a smaller rejection bandwidth compared to the distributed one. To improve the high-frequency stopband, an original technique for spurious responses suppression based on capacitively loaded stubs has been proposed. Even if the performances do not reach that obtained for the distributed approach, with this technique spurious responses are pushed until eight times the center frequency. A sensitivity study vs. critical parameters has also been carried out, showing the robustness of the design.


2018 ◽  
Vol 7 (4.12) ◽  
pp. 1
Author(s):  
Dr. Chhavi Saxena ◽  
Dr. Avinash Sharma ◽  
Dr. Rahul Srivastav ◽  
Dr. Hemant Kumar Gupta

Electrocardiogram (ECG) signal is the electrical recording of coronary heart activity. It is a common routine and vital cardiac diagnostic tool in which in electric signals are measured and recorded to recognize the practical status of heart, but ECG signal can be distorted with noise as, numerous artifacts corrupt the unique ECG signal and decreases it quality. Consequently, there may be a need to eliminate such artifacts from the authentic signal and enhance its quality for better interpretation. ECG signals are very low frequency signals of approximately 0.5Hz-100Hz and digital filters are used as efficient approach for noise removal of such low frequency signals. Noise may be any interference because of movement artifacts or due to power device that are present wherein ECG has been taken. Consequently, ECG signal processing has emerged as a common and effective tool for research and clinical practices. This paper gives the comparative evaluation of FIR and IIR filters and their performances from the ECG signal for proper understanding and display of the ECG signal.  


Sign in / Sign up

Export Citation Format

Share Document