A New Approach of Deep Learning-Based Tamil Vowels Prediction Using Segmentation and U-Net Architecture

Author(s):  
Julius Fusic S. ◽  
Karthikeyan S. ◽  
Sheik Masthan S. A. R.

In this chapter, 500 different images of Tamil vowels that are hand written (அஆஇஈஉஊஎஏஐஒஓஔஃ) interprets that the Tamil alphabets model has trained about 75% accuracy with proposed U-net model algorithm. The introduction of various segmentation proportions was discussed for English and Tamil language text identification was explained. In this work, the selection of image is split into four segments and read the data during training itself. Thus, the Tamil and English font prediction accuracy of the model was improved about 85% using U-net architecture was explained.

2020 ◽  
Vol 15 ◽  
Author(s):  
Deeksha Saxena ◽  
Mohammed Haris Siddiqui ◽  
Rajnish Kumar

Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among the scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, selection of DL models for the disease diagnosis.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Stefan Gerlach ◽  
Christoph Fürweger ◽  
Theresa Hofmann ◽  
Alexander Schlaefer

AbstractAlthough robotic radiosurgery offers a flexible arrangement of treatment beams, generating treatment plans is computationally challenging and a time consuming process for the planner. Furthermore, different clinical goals have to be considered during planning and generally different sets of beams correspond to different clinical goals. Typically, candidate beams sampled from a randomized heuristic form the basis for treatment planning. We propose a new approach to generate candidate beams based on deep learning using radiological features as well as the desired constraints. We demonstrate that candidate beams generated for specific clinical goals can improve treatment plan quality. Furthermore, we compare two approaches to include information about constraints in the prediction. Our results show that CNN generated beams can improve treatment plan quality for different clinical goals, increasing coverage from 91.2 to 96.8% for 3,000 candidate beams on average. When including the clinical goal in the training, coverage is improved by 1.1% points.


2021 ◽  
Vol 7 (3) ◽  
pp. 59
Author(s):  
Yohanna Rodriguez-Ortega ◽  
Dora M. Ballesteros ◽  
Diego Renza

With the exponential growth of high-quality fake images in social networks and media, it is necessary to develop recognition algorithms for this type of content. One of the most common types of image and video editing consists of duplicating areas of the image, known as the copy-move technique. Traditional image processing approaches manually look for patterns related to the duplicated content, limiting their use in mass data classification. In contrast, approaches based on deep learning have shown better performance and promising results, but they present generalization problems with a high dependence on training data and the need for appropriate selection of hyperparameters. To overcome this, we propose two approaches that use deep learning, a model by a custom architecture and a model by transfer learning. In each case, the impact of the depth of the network is analyzed in terms of precision (P), recall (R) and F1 score. Additionally, the problem of generalization is addressed with images from eight different open access datasets. Finally, the models are compared in terms of evaluation metrics, and training and inference times. The model by transfer learning of VGG-16 achieves metrics about 10% higher than the model by a custom architecture, however, it requires approximately twice as much inference time as the latter.


2019 ◽  
Vol 21 (1) ◽  
pp. 165 ◽  
Author(s):  
Dennis N. Lozada ◽  
Jayfred V. Godoy ◽  
Brian P. Ward ◽  
Arron H. Carter

Secondary traits from high-throughput phenotyping could be used to select for complex target traits to accelerate plant breeding and increase genetic gains. This study aimed to evaluate the potential of using spectral reflectance indices (SRI) for indirect selection of winter-wheat lines with high yield potential and to assess the effects of including secondary traits on the prediction accuracy for yield. A total of five SRIs were measured in a diversity panel, and F5 and doubled haploid wheat breeding populations planted between 2015 and 2018 in Lind and Pullman, WA. The winter-wheat panels were genotyped with 11,089 genotyping-by-sequencing derived markers. Spectral traits showed moderate to high phenotypic and genetic correlations, indicating their potential for indirect selection of lines with high yield potential. Inclusion of correlated spectral traits in genomic prediction models resulted in significant (p < 0.001) improvement in prediction accuracy for yield. Relatedness between training and test populations and heritability were among the principal factors affecting accuracy. Our results demonstrate the potential of using spectral indices as proxy measurements for selecting lines with increased yield potential and for improving prediction accuracy to increase genetic gains for complex traits in US Pacific Northwest winter wheat.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1749
Author(s):  
Elzbieta Szychta ◽  
Leszek Szychta

Energy efficiency of systems of water pumping is a complex problem since efficiency of two distinct interacting systems needs to be combined: water and power supply. This paper introduces a non-intrusive method of calculating the so-called “collective losses” of a cage induction motor. The term “collective losses”, which the authors define, allows for accurate estimation of motor efficiency. Control system of a pump determines operating point of a pumping station, and thus its efficiency. General estimated performance characteristics of a motor, components of a control system, are assumed to serve selection of a range of pumping speed variations. Rotational speed has a direct effect on motor load torque, pump power and head, and thus on motor performance. Hellwig’s statistical method was used to specify characteristics of estimated collective losses on the basis of experimental studies of 21 motors rated at up to 2.2 kW. The results of simulations and experiments are used to verify validity and efficiency of the suggested method. The method is non-intrusive, simple to use, and requires minimum data.


Genome ◽  
2010 ◽  
Vol 53 (11) ◽  
pp. 1002-1016 ◽  
Author(s):  
B.R. Cullis ◽  
A.B. Smith ◽  
C.P. Beeck ◽  
W.A. Cowling

Exploring and exploiting variety by environment (V × E) interaction is one of the major challenges facing plant breeders. In paper I of this series, we presented an approach to modelling V × E interaction in the analysis of complex multi-environment trials using factor analytic models. In this paper, we develop a range of statistical tools which explore V × E interaction in this context. These tools include graphical displays such as heat-maps of genetic correlation matrices as well as so-called E-scaled uniplots that are a more informative alternative to the classical biplot for large plant breeding multi-environment trials. We also present a new approach to prediction for multi-environment trials that include pedigree information. This approach allows meaningful selection indices to be formed either for potential new varieties or potential parents.


Sign in / Sign up

Export Citation Format

Share Document