scholarly journals Extension Plant Pathology: Strengthening Resources to Continue Serving the Public Interest

2012 ◽  
Vol 102 (7) ◽  
pp. 652-655 ◽  
Author(s):  
K. L. Everts ◽  
L. Osborne ◽  
A. J. Gevens ◽  
S. J. Vasquez ◽  
B. K. Gugino ◽  
...  

Extension plant pathologists deliver science-based information that protects the economic value of agricultural and horticultural crops in the United States by educating growers and the general public about plant diseases. Extension plant pathologists diagnose plant diseases and disorders, provide advice, and conduct applied research on local and regional plant disease problems. During the last century, extension plant pathology programs have adjusted to demographic shifts in the U.S. population and to changes in program funding. Extension programs are now more collaborative and more specialized in response to a highly educated clientele. Changes in federal and state budgets and policies have also reduced funding and shifted the source of funding of extension plant pathologists from formula funds towards specialized competitive grants. These competitive grants often favor national over local and regional plant disease issues and typically require a long lead time to secure funding. These changes coupled with a reduction in personnel pose a threat to extension plant pathology programs. Increasing demand for high-quality, unbiased information and the continued reduction in local, state, and federal funds is unsustainable and, if not abated, will lead to a delay in response to emerging diseases, reduce crop yields, increase economic losses, and place U.S. agriculture at a global competitive disadvantage. In this letter, we outline four recommendations to strengthen the role and resources of extension plant pathologists as they guide our nation's food, feed, fuel, fiber, and ornamental producers into an era of increasing technological complexity and global competitiveness.

2021 ◽  
Vol 11 (4) ◽  
pp. 251-264
Author(s):  
Radhika Bhagwat ◽  
Yogesh Dandawate

Plant diseases cause major yield and economic losses. To detect plant disease at early stages, selecting appropriate techniques is imperative as it affects the cost, diagnosis time, and accuracy. This research gives a comprehensive review of various plant disease detection methods based on the images used and processing algorithms applied. It systematically analyzes various traditional machine learning and deep learning algorithms used for processing visible and spectral range images, and comparatively evaluates the work done in literature in terms of datasets used, various image processing techniques employed, models utilized, and efficiency achieved. The study discusses the benefits and restrictions of each method along with the challenges to be addressed for rapid and accurate plant disease detection. Results show that for plant disease detection, deep learning outperforms traditional machine learning algorithms while visible range images are more widely used compared to spectral images.


Author(s):  
Sukanta Ghosh ◽  
Shubhanshu Arya ◽  
Amar Singh

Agricultural production is one of the main factors affecting a country's domestic market situation. Many problems are the reasons for estimating crop yields, which vary in different parts of the world. Overuse of chemical fertilizers, uneven distribution of rainfall, and uneven soil fertility lead to plant diseases. This forces us to focus on effective methods for detecting plant diseases. It is important to find an effective plant disease detection technique. Plants need to be monitored from the beginning of their life cycle to avoid such diseases. Observation is a kind of visual observation, which is time-consuming, costly, and requires a lot of experience. For speeding up this process, it is necessary to automate the disease detection system. A lot of researchers have developed plant leaf detection systems based on various technologies. In this chapter, the authors discuss the potential of methods for detecting plant leaf diseases. It includes various steps such as image acquisition, image segmentation, feature extraction, and classification.


EDIS ◽  
2009 ◽  
Vol 2009 (2) ◽  
Author(s):  
Shouan Zhang ◽  
Pamela D. Roberts

Revised! PP-113, a 2-page fact sheet by Shoan Zhang and Pamela D. Roberts, describes the symptoms and cultural controls for four plant diseases common to Sweet Basil in Florida — downy mildew, leaf spot, bacterial leaf spot, and fusarium wilt. Published by the UF Department of Plant Pathology, March 2009. PP-113/PP113: Florida Plant Disease Management Guide: Sweet Basil (ufl.edu)


2021 ◽  
Author(s):  
Timothy L Widmer ◽  
Jose M. Costa

There is an increasing need to supply the world with more food as the population continues to grow. Research on mitigating the effects of plant diseases to improve crop yield and quality can help provide more food without increasing the land area devoted to farming. National Program 303 (NP 303) within the U.S. Department of Agriculture, Agricultural Research Service is dedicated to research across multiple fields in plant pathology. This review article highlights the research impact within NP 303 between 2015 and 2020, including case studies on wheat and citrus diseases and the National Plant Disease Recovery System, which provide specific examples of this impact.


2001 ◽  
Vol 2 (1) ◽  
pp. 14 ◽  
Author(s):  
Patricia S. McManus ◽  
Virginia O. Stockwell

Streptomycin and oxytetracycline have been used on crop plants for 45 years and 25 years, respectively, without reports of adverse effects on humans. Their efficacy for control of plant diseases has been diminished in some regions due to the emergence of resistant pathogens. However, until effective and economic alternatives become available, antibiotics will remain important in the management of devastating plant diseases. Accepted for publication 19 March 2001. Published 27 March 2001.


EDIS ◽  
2009 ◽  
Vol 2009 (2) ◽  
Author(s):  
Ken Pernezny ◽  
Amanda Gevens ◽  
Tim Momol ◽  
Aaron Palmateer ◽  
Natalia Peres ◽  
...  

Revised! PPP-6, a 108-page publication by Ken Pernezny, Amanda Gevens, Tim Momol, Aaron Palmateer, Natalia Peres, Richard Raid, Pam Roberts, Gary Vallad, and Shousan Zhang, is a guide to lawful use of sprayable chemicals intended for control of plant diseases affecting vegetables grown in Florida. Published by the UF Department of Plant Pathology, September 2008.


2011 ◽  
pp. 211-214
Author(s):  
Siva Linga Sasanka Velivelli

Bacteria are microscopic, single-celled organisms found almost everywhere on earth in vast numbers. They are extremely diverse and play a major role in nature, contributing to plant growth and health. Agriculture provides a major share of the national income in many developing countries. However, diseases cause significant yield and economic losses in many important agricultural crops. Farmers have adopted a strategy to increase crop yields by applying large quantities of chemical fertilizers and pesticides. The use of chemical-based fertilizers offers some protection against plant pathogens and provides immediate relief, but cannot provide a long-term sustainable solution. The excessive use of chemical-based fertilizers also causes severe environmental problems. Many countries have banned the use of certain hazardous chemicals, including some pesticides that are used to control plant diseases. For example, methyl bromide, used in the control of pests, has been banned internationally because of its adverse effects on human health and ...


2009 ◽  
Vol 45 (No. 4) ◽  
pp. 125-139 ◽  
Author(s):  
R.D. Martyn

Plant diseases can be traced back almost as far as recorded history. Numerous ancient writings describe plagues and blasts destroying crops and modern civilization still faces many plant disease challenges. Plant pathology has its roots in botany and notable scientists such as Tillet, Prevost, and deBary already had concluded microscopic organisms could cause plant diseases before Robert Koch established the rules of proof of pathogenicity with sheep anthrax. Plant pathologists can be credited with helping improve crop yields and food production throughout the world. However, at a time when there are increasing challenges to crop production, some that potentially may increase the severity or distribution of plant diseases, the training of future plant pathologists appears to be declining, at least in the United States. The ability of the U.S. Land Grant University (USLGU) system to attract and train future generations of plant pathologists may be at risk. Recent data from university plant pathology departments collected by The American Phytopathological Society (APS) documents a decline in the number of students completing advanced degrees in plant pathology, departments with fewer faculty with a diverse expertise in applied plant pathology, fewer stand-alone, single discipline departments of plant pathology, a reduced ability of many departments to offer specific curricular aspects of plant pathology, and a demographic profile that casts an ominous prediction for an unusually large number of faculty retirements over the next decade. The impact of these factors could be a shortage of highly skilled, applied plant pathologists in the U.S. in coming years. The affect also may be felt globally as fewer international students may receive pre-doctoral and post-doctoral training in plant pathology in the U.S. as faculty retire and are not replaced. On the other hand, this likely will create greater opportunities for universities around the world to take leadership in many aspects of plant pathology education. While a decline in students and young faculty trained in applied and field-level specialties of plant pathology (mycology, bacteriology, plant nematology, forest pathology, epidemiology, etc.) is occurring, those trained in the cellular and molecular host-pathogen interactions specialties appear to be increasing. Many plant pathology faculty hired at USLGUs in the last decade are trained in molecular biology and received their Ph.D. degree in a field other than plant pathology. They are now applying those skills to research numerous aspects of host-pathogen interactions of model pathosystems. A shift to a greater research emphasis on molecular host-pathogen interactions over the last decade is evidenced by the number of research articles published in the three APS journals; Plant Disease, Phytopathology and Molecular Plant-Microbe Interactions (MPMI). From 1985 to 2007, there has been a decline in the number of articles published in Plant Disease (–29%) and Phytopathology (–36%) and a steady increase in those published in MPMI since its inception in 1990 (+111%). With new research tools come new research questions. The tools of molecular biology have allowed us to look deeper into questions than ever before and provided us with a perspective not before seen. As we dissect and decode the genomes of the world’s most notorious plant pathogens we get closer and closer to alleviating the global losses and human suffering caused by plant diseases. New “designer crops” with engineered traits for drought and cold tolerance, pest resistance, increased levels of micronutrients, healthier oils such as omega fatty acids, and plant-derived pharmaceuticals are all on the horizon. Research in the future likely will focus on new problems, traditionally seen as outside the discipline of plant pathology. The impact of climate change on plant diseases will be significant. As many parts of the world become warmer and drier some plant diseases likely will increase in severity. Pathogens are likely to migrate and survive in more northern latitudes greatly expanding their range and diseases exacerbated by abiotic stresses such as drought and salinity will increase. Plant pathology will continue to evolve as a multidisciplinary science. These changes will open up many new research opportunities. Plant pathology will play a bigger role in global food security. Research into the molecular and cellular interactions of symbiotic and endophytic organisms will help provide answers to food-borne illnesses caused by E. coli and Salmonella and how these and other human pathogens become established in plants in the field. Plant pathologists will team up with biomedical and aeronautical engineers, nanotechnologists, and computer scientists to develop microsensory technology to detect the introduction and spread of pathogens for biosecurity, diagnostics and epidemiological modeling purposes. Traditional areas of plant disease management and the use of biologicals for disease control also will benefit from a better understanding of the molecular and cellular processes and the similarity of virulence mechanisms and pathogen effectors between plant, insect, and vertebrate pathogens likely will bring new insights into human diseases. And last, but not least, there likely will be a resurgence in plant disease management and epidemiological research as the world’s dependence on biofuels increases and results in new diseases on intensively cultivated plant species used for biomass production.


EDIS ◽  
2008 ◽  
Vol 2008 (2) ◽  
Author(s):  
Ken Pernezny ◽  
Monica Elliott ◽  
Aaron Palmateer ◽  
Nikol Havranek

PP248/MG441- PP251/MG444, a 4-part series by Aaron Palmateer, Ken Pernezny, Monica Elliott, and Nikol Havranek, are new additions to the Master Gardener Handbook. They provide beginning Master Gardener volunteers with methods for taking a systematic approach to diagnosis of plant disease problems. Published by the UF Department of Plant Pathology, February 2008. PP249/MG442: Guidelines for Identification and Management of Plant Disease Problems: Part II. Diagnosing Plant Diseases Caused by Fungi, Bacteria and Viruses (ufl.edu) Ask IFAS: Guidelines to Identification and Management of Plant Disease Problems series (ufl.edu)


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Gianni Fenu ◽  
Francesca Maridina Malloci

Early diagnosis of leaf diseases is a fundamental tool in precision agriculture, thanks to its high correlation with food safety and environmental sustainability. It is proven that plant diseases are responsible for serious economic losses every year. The aim of this work is to study an efficient network capable of assisting farmers in recognizing pear leaf symptoms and providing targeted information for rational use of pesticides. The proposed model consists of a multioutput system based on convolutional neural networks. The deep learning approach considers five pretrained CNN architectures, namely, VGG-16, VGG-19, ResNet50, InceptionV3, MobileNetV2, and EfficientNetB0, as feature extractors to classify three diseases and six severity levels. Computational experiments are conducted to evaluate the model on the DiaMOS Plant dataset, a self-collected dataset in the field. The results obtained confirm the robustness of the proposed model in automatically extracting the discriminating features of diseased leaves by adopting the multitasking learning paradigm.


Sign in / Sign up

Export Citation Format

Share Document