Some Words About Nature-Inspired Computing

2022 ◽  
pp. 1-9
Author(s):  
Mohamed Arezki Mellal

The use of artificial intelligence (AI) in various domains has drastically increased during the last decade. Nature-inspired computing is a strong computing approach that belongs to AI and covers a wide range of techniques. It has successfully tackled many complex problems and outperformed several classical techniques. This chapter provides the original ideas behind some nature-inspired computing techniques and their applications, such as the genetic algorithms, particle swarm optimization, grey wolf optimizer, ant colony optimization, plant propagation algorithm, cuckoo optimization algorithm, and artificial neural networks.

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2147 ◽  
Author(s):  
Zhihang Yue ◽  
Sen Zhang ◽  
Wendong Xiao

Grey wolf optimizer (GWO) is a meta-heuristic algorithm inspired by the hierarchy of grey wolves (Canis lupus). Fireworks algorithm (FWA) is a nature-inspired optimization method mimicking the explosion process of fireworks for optimization problems. Both of them have a strong optimal search capability. However, in some cases, GWO converges to the local optimum and FWA converges slowly. In this paper, a new hybrid algorithm (named as FWGWO) is proposed, which fuses the advantages of these two algorithms to achieve global optima effectively. The proposed algorithm combines the exploration ability of the fireworks algorithm with the exploitation ability of the grey wolf optimizer (GWO) by setting a balance coefficient. In order to test the competence of the proposed hybrid FWGWO, 16 well-known benchmark functions having a wide range of dimensions and varied complexities are used in this paper. The results of the proposed FWGWO are compared to nine other algorithms, including the standard FWA, the native GWO, enhanced grey wolf optimizer (EGWO), and augmented grey wolf optimizer (AGWO). The experimental results show that the FWGWO effectively improves the global optimal search capability and convergence speed of the GWO and FWA.


2016 ◽  
Vol 78 (11) ◽  
Author(s):  
Amolkumar Narayan Jadhav ◽  
Gomathi N.

Clustering finds variety of application in a wide range of disciplines because it is mostly helpful for grouping of similar data objects together. Due to the wide applicability, different algorithms have been presented in the literature for segmenting large multidimensional data into discernible representative clusters. Accordingly, in this paper, Kernel-based exponential grey wolf optimizer (KEGWO) is developed for rapid centroid estimation in data clustering. Here, KEGWO is newly proposed to search the cluster centroids with a new objective evaluation which considered two parameters called logarithmic kernel function and distance difference between two top clusters. Based on the new objective function and the modified KEGWO algorithm, centroids are encoded as position vectors and the optimal location is found for the final clustering. The proposed KEGWO algorithm is evaluated with banknote authentication Data Set, iris dataset and wine dataset using four metrics such as, Mean Square Error, F-measure, Rand co-efficient and jaccord coefficient. From the outcome, we proved that the proposed KEGWO algorithm outperformed the existing algorithms.   


2021 ◽  
Vol 20 ◽  
pp. 66-75
Author(s):  
Kennedy Ronoh ◽  
George Kamucha

TV white spaces (TVWS) can be utilized by Secondary Users (SUs) equipped with cognitive radio functionality on the condition that they do not cause harmful interference to Primary Users (PUs). Optimization of power allocation is necessary when there is a high density of secondary users in a network in order to reduce the level of interference among SUs and to protect PUs against harmful interference. Grey Wolf Optimizer (GWO) is relatively recent population based metaheuristic algorithm that has shown superior performance compared to other population based metaheuristic algorithms. Recent trend has been to hybridize population based metaheuristic algorithms in order to avoid the problem of getting trapped in a local optimum. This paper presents the design and analysis of performance of a hybrid grey wolf optimizer and Firefly Algorithm (FA) with Particle Swarm Optimization operators for optimization of power allocation in TVWS network power allocation as a continuous optimization problem. Matlab was used for simulation. The hybrid of GWO, FA and PSO (HFAGWOPSO) reduces sum power by 81.42% compared to GWO and improves sum throughput by 16.41% when compared to GWO. Simulation results also show that the algorithm has better convergence rate.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 659 ◽  
Author(s):  
Sayan Chakraborty ◽  
Ratika Pradhan ◽  
Amira S. Ashour ◽  
Luminita Moraru ◽  
Nilanjan Dey

Image registration has an imperative role in medical imaging. In this work, a grey-wolf optimizer (GWO)-based non-rigid demons registration is proposed to support the retinal image registration process. A comparative study of the proposed GWO-based demons registration framework with cuckoo search, firefly algorithm, and particle swarm optimization-based demons registration is conducted. In addition, a comparative analysis of different demons registration methods, such as Wang’s demons, Tang’s demons, and Thirion’s demons which are optimized using the proposed GWO is carried out. The results established the superiority of the GWO-based framework which achieved 0.9977 correlation, and fast processing compared to the use of the other optimization algorithms. Moreover, GWO-based Wang’s demons performed better accuracy compared to the Tang’s demons and Thirion’s demons framework. It also achieved the best less registration error of 8.36 × 10−5.


Author(s):  
Suman Madan ◽  
Puneet Goswami

The recent techniques built on cloud computing for data processing is scalable and secure, which increasingly attracts the infrastructure to support big data applications. This paper proposes an effective anonymization based privacy preservation model using k-anonymization criteria and Grey wolf-Cat Swarm Optimization (GWCSO) for attaining privacy preservation in big data. The anonymization technique is processed by adapting k- anonymization criteria for duplicating k records from the original database. The proposed GWCSO is developed by integrating Grey Wolf Optimizer (GWO) and Cat Swarm Optimization (CSO) for constructing the k-anonymized database, which reveals only the essential details to the end users by hiding the confidential information. The experimental results of the proposed technique are compared with various existing techniques based on the performance metrics, such as Classification accuracy (CA) and Information loss (IL). The experimental results show that the proposed technique attains an improved CA value of 0.005 and IL value of 0.798, respectively.


Author(s):  
Sayan Chakraborty ◽  
Ratika Pradhan ◽  
Amira S. Ashour ◽  
Luminita Moraru ◽  
Nilanjan Dey

Image registration has an imperative role in medical imaging. In this work, a grey-wolf optimizer (GWO) based non-rigid demons registration is proposed to support the retinal image registration process. A comparative study of the proposed GWO-based demons registration framework with cuckoo search, firefly algorithm, and particle swarm optimization- based demons registration is conducted. In addition, a comparative analysis of different demons registration methods, such as Wang’s demons, Tang’s demons, and Thirion’s demons which are optimized using the proposed GWO is carried out. The results established the superiority of the GWO-based framework which achieved 0.9977 correlation, and fast processing compared to the use of the other optimization algorithms. Moreover, GWO-based Wang’s demons performed better accuracy compared to the Tang’s demons and Thirion’s demons framework. It also achieved the best less registration error of 8.36×10-5.


Sign in / Sign up

Export Citation Format

Share Document