Different Flexibilities of 3D Scanners and Their Impact on Distinctive Applications

2020 ◽  
Vol 7 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Mohd Javaid ◽  
Abid Haleem ◽  
Shahbaz Khan ◽  
Sunil Luthra

3D scanners are supporting technology which offers a higher level of flexibility to create designs for ergonomic tooling, biocompatible surgical guides, and realistic prototypes and parts. Flexibility helps to reduce lead time, weight, cost, and product development time. Scanning technologies are in tandem with support software that helps a designer to (re)design products at a cheaper and faster rate. There is a need to understand different types of flexibilities and associated application of 3D scanner. In this article, we have conducted an extensive review of the available literature for identifying various flexibilities of 3D scanners and its applications. This research categorises 3D scanner flexibility and applications into five major types. From design to final quality inspection, these flexibilities play a significant role in industries and sectors to achieve optimum performance. Ranking of these flexibilities and their impact on different applications are accomplished using the analytical hierarchical process (AHP) with the help of expert opinion. The ranking of five significant flexibilities by using 3D scanners, undertaken through the AHP technique shows that scanning provides object flexibility at a higher level. The impacts of different flexibilities on applications are also weighted, and it shows that all flexibilities are enough to achieve application individually. This digital technology is helpful to create the customised product which is also helpful to achieve goals of Industry 4.0. It facilitates the customisation and has a significant impact on the design applications. This study provides an understanding of the 3D scanner in the context of flexibilities by identifying the different flexibilities it offers when used for different applications. Findings may assist developing a decision support system for the selection of 3D scanners for the different applications.

2016 ◽  
Vol 844 ◽  
pp. 79-83
Author(s):  
Peter Tuleja

Contribution describes selecting and applying appropriate deployment of 3D scanners for the implementation of tasks in the realization projects. Analyzes the methods of digitizing and indexing as well as the possibility of their use for handling tasks in robotics. Well it describes the selection of a suitable 3D scanner to solve specific project.


2021 ◽  
Vol 13 (4) ◽  
pp. 2146
Author(s):  
Anik Gupta ◽  
Carlos J. Slebi-Acevedo ◽  
Esther Lizasoain-Arteaga ◽  
Jorge Rodriguez-Hernandez ◽  
Daniel Castro-Fresno

Porous asphalt (PA) mixtures are more environmentally friendly but have lower durability than dense-graded mixtures. Additives can be incorporated into PA mixtures to enhance their mechanical strength; however, they may compromise the hydraulic characteristics, increase the total cost of pavement, and negatively affect the environment. In this paper, PA mixtures were produced with 5 different types of additives including 4 fibers and 1 filler. Their performances were compared with the reference mixtures containing virgin bitumen and polymer-modified bitumen. The performance of all mixes was assessed using: mechanical, hydraulic, economic, and environmental indicators. Then, the Delphi method was applied to compute the relative weights for the parameters in multi-criteria decision-making methods. Evaluation based on distance from average solution (EDAS), technique for order of the preference by similarity to ideal solution (TOPSIS), and weighted aggregated sum product assessment (WASPAS) were employed to rank the additives. According to the results obtained, aramid pulp displayed comparable and, for some parameters such as abrasion resistance, even better performance than polymer-modified bitumen, whereas cellulose fiber demonstrated the best performance regarding sustainability, due to economic and environmental benefits.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jerzy Montusiewicz ◽  
Marek Miłosz ◽  
Jacek Kęsik ◽  
Kamil Żyła

AbstractHistorical costumes are part of cultural heritage. Unlike architectural monuments, they are very fragile, which exacerbates the problems of their protection and popularisation. A big help in this can be the digitisation of their appearance, preferably using modern techniques of three-dimensional representation (3D). The article presents the results of the search for examples and methodologies of implementing 3D scanning of exhibited historical clothes as well as the attendant problems. From a review of scientific literature it turns out that so far practically no one in the world has made any methodical attempts at scanning historical clothes using structured-light 3D scanners (SLS) and developing an appropriate methodology. The vast majority of methods for creating 3D models of clothes used photogrammetry and 3D modelling software. Therefore, an innovative approach was proposed to the problem of creating 3D models of exhibited historical clothes through their digitalisation by means of a 3D scanner using structural light technology. A proposal for the methodology of this process and concrete examples of its implementation and results are presented. The problems related to the scanning of 3D historical clothes are also described, as well as a proposal how to solve them or minimise their impact. The implementation of the methodology is presented on the example of scanning elements of the Emir of Bukhara's costume (Uzbekistan) from the end of the nineteenth century, consisting of the gown, turban and shoes. Moreover, the way of using 3D models and information technologies to popularise cultural heritage in the space of digital resources is also discussed.


2021 ◽  
Vol 11 (11) ◽  
pp. 5235
Author(s):  
Nikita Andriyanov

The article is devoted to the study of convolutional neural network inference in the task of image processing under the influence of visual attacks. Attacks of four different types were considered: simple, involving the addition of white Gaussian noise, impulse action on one pixel of an image, and attacks that change brightness values within a rectangular area. MNIST and Kaggle dogs vs. cats datasets were chosen. Recognition characteristics were obtained for the accuracy, depending on the number of images subjected to attacks and the types of attacks used in the training. The study was based on well-known convolutional neural network architectures used in pattern recognition tasks, such as VGG-16 and Inception_v3. The dependencies of the recognition accuracy on the parameters of visual attacks were obtained. Original methods were proposed to prevent visual attacks. Such methods are based on the selection of “incomprehensible” classes for the recognizer, and their subsequent correction based on neural network inference with reduced image sizes. As a result of applying these methods, gains in the accuracy metric by a factor of 1.3 were obtained after iteration by discarding incomprehensible images, and reducing the amount of uncertainty by 4–5% after iteration by applying the integration of the results of image analyses in reduced dimensions.


2021 ◽  
pp. 1-21
Author(s):  
Muhammad Shabir ◽  
Rimsha Mushtaq ◽  
Munazza Naz

In this paper, we focus on two main objectives. Firstly, we define some binary and unary operations on N-soft sets and study their algebraic properties. In unary operations, three different types of complements are studied. We prove De Morgan’s laws concerning top complements and for bottom complements for N-soft sets where N is fixed and provide a counterexample to show that De Morgan’s laws do not hold if we take different N. Then, we study different collections of N-soft sets which become idempotent commutative monoids and consequently show, that, these monoids give rise to hemirings of N-soft sets. Some of these hemirings are turned out as lattices. Finally, we show that the collection of all N-soft sets with full parameter set E and collection of all N-soft sets with parameter subset A are Stone Algebras. The second objective is to integrate the well-known technique of TOPSIS and N-soft set-based mathematical models from the real world. We discuss a hybrid model of multi-criteria decision-making combining the TOPSIS and N-soft sets and present an algorithm with implementation on the selection of the best model of laptop.


2021 ◽  
Vol 13 (5) ◽  
pp. 956
Author(s):  
Florian Mouret ◽  
Mohanad Albughdadi ◽  
Sylvie Duthoit ◽  
Denis Kouamé ◽  
Guillaume Rieu ◽  
...  

This paper studies the detection of anomalous crop development at the parcel-level based on an unsupervised outlier detection technique. The experimental validation is conducted on rapeseed and wheat parcels located in Beauce (France). The proposed methodology consists of four sequential steps: (1) preprocessing of synthetic aperture radar (SAR) and multispectral images acquired using Sentinel-1 and Sentinel-2 satellites, (2) extraction of SAR and multispectral pixel-level features, (3) computation of parcel-level features using zonal statistics and (4) outlier detection. The different types of anomalies that can affect the studied crops are analyzed and described. The different factors that can influence the outlier detection results are investigated with a particular attention devoted to the synergy between Sentinel-1 and Sentinel-2 data. Overall, the best performance is obtained when using jointly a selection of Sentinel-1 and Sentinel-2 features with the isolation forest algorithm. The selected features are co-polarized (VV) and cross-polarized (VH) backscattering coefficients for Sentinel-1 and five Vegetation Indexes for Sentinel-2 (among us, the Normalized Difference Vegetation Index and two variants of the Normalized Difference Water). When using these features with an outlier ratio of 10%, the percentage of detected true positives (i.e., crop anomalies) is equal to 94.1% for rapeseed parcels and 95.5% for wheat parcels.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kangkang Zha ◽  
Xu Li ◽  
Zhen Yang ◽  
Guangzhao Tian ◽  
Zhiqiang Sun ◽  
...  

AbstractArticular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Timo Homburg ◽  
Anja Cramer ◽  
Laura Raddatz ◽  
Hubert Mara

AbstractMotivated by the increased use of 3D acquisition of objects by cultural heritage institutions, we were investigating ontologies and metadata schemes for the acquisition process to provide details about the 3D capturing, which can be combined with preexisting ontologies describing an object. Therefore we divided the 3D capturing workflow into common steps starting with the object being placed in front of a 3D scanner to preparation and publication of the 3D datasets and/or derived images. While the proposed ontology is well defined on a coarse level of detail for very different techniques, e.g. Stucture from Motion and LiDAR we elaborated the metadata scheme in very fine detail for 3D scanners available at our institutions. This includes practical experiments with measurement data from past and current projects including datasets published at Zenodo as guiding examples and the source code for their computation. Additionally, the free and Open Source GigaMesh Software Framework’s analysis and processing methods have been extended to provide metadata about the 3D processing steps like mesh cleaning as well as 2D image generation. Finally, we discuss the current limitations and give an outlook about future extensions.


2021 ◽  
Author(s):  
Deborah Martínez ◽  
Rafael Guzmán-Cabrera ◽  
Daniel A. May-Arrioja ◽  
Iván Hernández-Romano ◽  
Miguel Torres-Cisneros

Sign in / Sign up

Export Citation Format

Share Document