scholarly journals Emotion Detection Using Deep Learning Algorithm

Author(s):  
Shital Sanjay Yadav ◽  
Anup S. Vibhute

Automatic emotion detection is a prime task in computerized human behaviour analysis. The proposed system is an automatic emotion detection using convolution neural network. The proposed end-to-end CNN is therefore named as ENet. Keeping in mind the computational efficiency, the deep network makes use of trained weight parameters of the MobileNet to initialize the weight parameters of ENet. On top of the last convolution layer of ENet, the authors place global average pooling layer to make it independent of the input image size. The ENet is validated for emotion detection using two benchmark datasets: Cohn-Kanade+ (CK+) and Japanese female facial expression (JAFFE). The experimental results show that the proposed ENet outperforms the other existing methods for emotion detection.

2021 ◽  
Vol 06 (03) ◽  
Author(s):  
Shital S.Yadav ◽  

Automatic emotion detection is a key task in human machine interaction,where emotion detection makes system more natural. In this paper, we propose an emotion detection using deep learning algorithm. The proposed algorithm uses end to end CNN. To increase computational efficiency of the deep network, we make use of trained weight parameters of the MobileNet to initialize the weight parameters of our system. To make our system independent of the input image size, we place global average pooling layer On top of the last convolution layer of it. Proposed system is validated for emotion detection using two benchmark datasets viz. Cohn–Kanade+ (CK+) and Japanese female facial expression (JAFFE). The experimental results show that the proposed method outperforms the other existing methods for emotion detection.


2021 ◽  
Author(s):  
Ganesh N. Jorvekar ◽  
Mohit Gangwar

In recent years, the number of user comments and text materials has increased dramatically. Analysis of the emotions has drawn interest from researchers. Earlier research in the field of artificial-intelligence concentrate on identification of emotion and exploring the explanation the emotions can’t recognized or misrecognized. The association between the emotions leads to the understanding of emotion loss. In this Work we are trying to fill the gap between emotional recognition and emotional co-relation mining through social media reviews of natural language text. The association between emotions, represented as the emotional uncertainty and evolution, is mainly triggered by cognitive bias in the human emotion. Numerous types of features and Recurrent neural-network (RNN) as deep learning model provided to mine the emotion co-relation from emotion detection using text. The rule on conflict of emotions is derived on a symmetric basis. TF-IDF, NLP Features and Co-relation features has used for feature extraction as well as section and Recurrent Neural Network (RNN) and Hybrid deep learning algorithm for classification has used to demonstrates the entire research experiments. Finally evaluate the system performance with various existing system and show the effectiveness of proposed system.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 652 ◽  
Author(s):  
Carlo Augusto Mallio ◽  
Andrea Napolitano ◽  
Gennaro Castiello ◽  
Francesco Maria Giordano ◽  
Pasquale D'Alessio ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) pneumonia and immune checkpoint inhibitor (ICI) therapy-related pneumonitis share common features. The aim of this study was to determine on chest computed tomography (CT) images whether a deep convolutional neural network algorithm is able to solve the challenge of differential diagnosis between COVID-19 pneumonia and ICI therapy-related pneumonitis. Methods: We enrolled three groups: a pneumonia-free group (n = 30), a COVID-19 group (n = 34), and a group of patients with ICI therapy-related pneumonitis (n = 21). Computed tomography images were analyzed with an artificial intelligence (AI) algorithm based on a deep convolutional neural network structure. Statistical analysis included the Mann–Whitney U test (significance threshold at p < 0.05) and the receiver operating characteristic curve (ROC curve). Results: The algorithm showed low specificity in distinguishing COVID-19 from ICI therapy-related pneumonitis (sensitivity 97.1%, specificity 14.3%, area under the curve (AUC) = 0.62). ICI therapy-related pneumonitis was identified by the AI when compared to pneumonia-free controls (sensitivity = 85.7%, specificity 100%, AUC = 0.97). Conclusions: The deep learning algorithm is not able to distinguish between COVID-19 pneumonia and ICI therapy-related pneumonitis. Awareness must be increased among clinicians about imaging similarities between COVID-19 and ICI therapy-related pneumonitis. ICI therapy-related pneumonitis can be applied as a challenge population for cross-validation to test the robustness of AI models used to analyze interstitial pneumonias of variable etiology.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 830
Author(s):  
Seokho Kang

k-nearest neighbor (kNN) is a widely used learning algorithm for supervised learning tasks. In practice, the main challenge when using kNN is its high sensitivity to its hyperparameter setting, including the number of nearest neighbors k, the distance function, and the weighting function. To improve the robustness to hyperparameters, this study presents a novel kNN learning method based on a graph neural network, named kNNGNN. Given training data, the method learns a task-specific kNN rule in an end-to-end fashion by means of a graph neural network that takes the kNN graph of an instance to predict the label of the instance. The distance and weighting functions are implicitly embedded within the graph neural network. For a query instance, the prediction is obtained by performing a kNN search from the training data to create a kNN graph and passing it through the graph neural network. The effectiveness of the proposed method is demonstrated using various benchmark datasets for classification and regression tasks.


Author(s):  
Wenjing She

In this research, Dunhuang murals is taken as the object of restoration, and the role of digital repair combined with deep learning algorithm in mural restoration is explored. First, the image restoration technology is described, as well as its advantages and disadvantages are analyzed. Second, the deep learning algorithm based on artificial neural network is described and analyzed. Finally, the deep learning algorithm is integrated into the digital repair technology, and a mural restoration method based on the generalized regression neural network is proposed. The morphological expansion method and anisotropic diffusion method are used to preprocess the image. The MATLAB software is used for the simulation analysis and evaluation of the image restoration effect. The results show that in the restoration of the original image, the accuracy of the digital image restoration technology is not high. The nontexture restoration technology is not applicable in the repair of large-scale texture areas. The predicted value of the mural restoration effect based on the generalized neural network is closer to the true value. The anisotropic diffusion method has a significant effect on the processing of image noise. In the image similarity rate, the different number of training samples and smoothing parameters are compared and analyzed. It is found that when the value of δ is small, the number of training samples should be increased to improve the accuracy of the prediction value. If the number of training samples is small, a larger value of δ is needed to get a better prediction effect, and the best restoration effect is obtained for the restored image. Through this study, it is found that this study has a good effect on the restoration model of Dunhuang murals. It provides experimental reference for the restoration of later murals.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 717 ◽  
Author(s):  
Gang Li ◽  
Biao Ma ◽  
Shuanhai He ◽  
Xueli Ren ◽  
Qiangwei Liu

Regular crack inspection of tunnels is essential to guarantee their safe operation. At present, the manual detection method is time-consuming, subjective and even dangerous, while the automatic detection method is relatively inaccurate. Detecting tunnel cracks is a challenging task since cracks are tiny, and there are many noise patterns in the tunnel images. This study proposes a deep learning algorithm based on U-Net and a convolutional neural network with alternately updated clique (CliqueNet), called U-CliqueNet, to separate cracks from background in the tunnel images. A consumer-grade DSC-WX700 camera (SONY, Wuxi, China) was used to collect 200 original images, then cracks are manually marked and divided into sub-images with a resolution of 496   ×   496 pixels. A total of 60,000 sub-images were obtained in the dataset of tunnel cracks, among which 50,000 were used for training and 10,000 were used for testing. The proposed framework conducted training and testing on this dataset, the mean pixel accuracy (MPA), mean intersection over union (MIoU), precision and F1-score are 92.25%, 86.96%, 86.32% and 83.40%, respectively. We compared the U-CliqueNet with fully convolutional networks (FCN), U-net, Encoder–decoder network (SegNet) and the multi-scale fusion crack detection (MFCD) algorithm using hypothesis testing, and it’s proved that the MIoU predicted by U-CliqueNet was significantly higher than that of the other four algorithms. The area, length and mean width of cracks can be calculated, and the relative error between the detected mean crack width and the actual mean crack width ranges from −11.20% to 18.57%. The results show that this framework can be used for fast and accurate crack semantic segmentation of tunnel images.


Sign in / Sign up

Export Citation Format

Share Document