Optimization of Power Allocation in Multimedia Wireless Sensor Networks

Author(s):  
Ming Yang ◽  
Dajin Wang ◽  
Nikolaos Bourbakis

Wireless Sensor Networks (WSN) have been widely applied in monitoring and surveillance fields in recent years and have dramatically changed the methodologies and technologies in monitoring and surveillance. However, the sensor nodes in WSN have very limited computing resources and power supply, and thus the maximization of network life is a very critical issue. In the newly-emerging Wireless Multimedia Sensor Network (WMSN), the high volume of sensed video data needs to be compressed before transmission. Different video coding schemes have been developed and applied to wireless multimedia sensor networks, and there exists a tradeoff between the power consumption of data compression and that of data transmission. Video compression will reduce the amount of data that needs to be transmitted and thus the amount of power consumed for data transmission; however, too much video compression will consume excessive power which outweighs the power savings on data transmission. Thus, how to reach an optimized balance between compression and transmission and maximize network life becomes a challenging research issue. In this paper, the authors propose mathematical models which describe power consumptions of data compression and transmission of sensor nodes in hexagon-shaped clusters. Under the proposed model, they have achieved the optimized data compression ratio which can minimize the overall power consumption of the whole cluster.

2019 ◽  
Vol 11 (21) ◽  
pp. 6171 ◽  
Author(s):  
Jangsik Bae ◽  
Meonghun Lee ◽  
Changsun Shin

With the expansion of smart agriculture, wireless sensor networks are being increasingly applied. These networks collect environmental information, such as temperature, humidity, and CO2 rates. However, if a faulty sensor node operates continuously in the network, unnecessary data transmission adversely impacts the network. Accordingly, a data-based fault-detection algorithm was implemented in this study to analyze data of sensor nodes and determine faults, to prevent the corresponding nodes from transmitting data; thus, minimizing damage to the network. A cloud-based “farm as a service” optimized for smart farms was implemented as an example, and resource management of sensors and actuators was provided using the oneM2M common platform. The effectiveness of the proposed fault-detection model was verified on an integrated management platform based on the Internet of Things by collecting and analyzing data. The results confirm that when a faulty sensor node is not separated from the network, unnecessary data transmission of other sensor nodes occurs due to continuous abnormal data transmission; thus, increasing energy consumption and reducing the network lifetime.


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


Sensor nodes are exceedingly energy compelled instrument, since it is battery operated instruments. In wsn network, every node is liable to the data transmission through the wireless mode [1]. Wireless sensor networks (WSN) is made of a huge no. of small nodes with confined functionality. The essential theme of the wireless sensor network is energy helpless and the WSN is collection of sensor. Every sensor terminal is liable to sensing, store and information clan and send it forwards into sink. The communication within the node is done via wireless network [3].Energy efficiency is the main concentration of a desining the better routing protocol. LEACH is a protocol. This is appropriate for short range network, since imagine that whole sensor node is capable of communication with inter alia and efficient to access sink node, which is not always correct for a big network. Hence, coverage is a problem which we attempt to resolve [6]. The main focus within wireless sensor networks is to increase the network life-time span as much as possible, so that resources can be utilizes efficiently and optimally. Various approaches which are based on the clustering are very much optimal in functionality. Life-time of the network is always connected with sensor node’s energy implemented at distant regions for stable and defect bearable observation [10].


2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668968 ◽  
Author(s):  
Sunyong Kim ◽  
Chiwoo Cho ◽  
Kyung-Joon Park ◽  
Hyuk Lim

In wireless sensor networks powered by battery-limited energy harvesting, sensor nodes that have relatively more energy can help other sensor nodes reduce their energy consumption by compressing the sensing data packets in order to consequently extend the network lifetime. In this article, we consider a data compression technique that can shorten the data packet itself to reduce the energies consumed for packet transmission and reception and to eventually increase the entire network lifetime. First, we present an energy consumption model, in which the energy consumption at each sensor node is derived. We then propose a data compression algorithm that determines the compression level at each sensor node to decrease the total energy consumption depending on the average energy level of neighboring sensor nodes while maximizing the lifetime of multihop wireless sensor networks with energy harvesting. Numerical simulations show that the proposed algorithm achieves a reduced average energy consumption while extending the entire network lifetime.


Many researches have been proposed for efficiency of data transmission from sensor nodes to sink node for energy efficiency in wireless sensor networks. Among them, cluster-based methods have been preferred In this study, we used the angle formed with the sink node and the distance of the cluster members to calculate the probability of cluster head. Each sensor node sends measurement values to header candidates, and the header candidate node measures the probability value of the header with the value received from its candidate member nodes. To construct the cluster members, the data transfer direction is considered. We consider angle, distance, and direction as cluster header possibility value. Experimental results show that data transmission is proceeding in the direction of going to the sink node. We calculated and displayed the header possibility value of the neighbor nodes of the sensor node and confirmed the candidates of the cluster header for data transfer as the value. In this study, residual energy amount of each sensor node is not considered. In the next study, we calculate the value considering the residual energy amount of the node when measuring the header possibility value of the cluster.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4273 ◽  
Author(s):  
Jianlin Liu ◽  
Fenxiong Chen ◽  
Dianhong Wang

Data compression is very important in wireless sensor networks (WSNs) with the limited energy of sensor nodes. Data communication results in energy consumption most of the time; the lifetime of sensor nodes is usually prolonged by reducing data transmission and reception. In this paper, we propose a new Stacked RBM Auto-Encoder (Stacked RBM-AE) model to compress sensing data, which is composed of a encode layer and a decode layer. In the encode layer, the sensing data is compressed; and in the decode layer, the sensing data is reconstructed. The encode layer and the decode layer are composed of four standard Restricted Boltzmann Machines (RBMs). We also provide an energy optimization method that can further reduce the energy consumption of the model storage and calculation by pruning the parameters of the model. We test the performance of the model by using the environment data collected by Intel Lab. When the compression ratio of the model is 10, the average Percentage RMS Difference value is 10.04%, and the average temperature reconstruction error value is 0.2815 °C. The node communication energy consumption in WSNs can be reduced by 90%. Compared with the traditional method, the proposed model has better compression efficiency and reconstruction accuracy under the same compression ratio. Our experiment results show that the new neural network model can not only apply to data compression for WSNs, but also have high compression efficiency and good transfer learning ability.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Jonathan Gana Kolo ◽  
S. Anandan Shanmugam ◽  
David Wee Gin Lim ◽  
Li-Minn Ang ◽  
Kah Phooi Seng

Energy is an important consideration in the design and deployment of wireless sensor networks (WSNs) since sensor nodes are typically powered by batteries with limited capacity. Since the communication unit on a wireless sensor node is the major power consumer, data compression is one of possible techniques that can help reduce the amount of data exchanged between wireless sensor nodes resulting in power saving. However, wireless sensor networks possess significant limitations in communication, processing, storage, bandwidth, and power. Thus, any data compression scheme proposed for WSNs must be lightweight. In this paper, we present an adaptive lossless data compression (ALDC) algorithm for wireless sensor networks. Our proposed ALDC scheme performs compression losslessly using multiple code options. Adaptive compression schemes allow compression to dynamically adjust to a changing source. The data sequence to be compressed is partitioned into blocks, and the optimal compression scheme is applied for each block. Using various real-world sensor datasets we demonstrate the merits of our proposed compression algorithm in comparison with other recently proposed lossless compression algorithms for WSNs.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Farzad Kiani

Energy issue is one of the most important problems in wireless sensor networks. They consist of low-power sensor nodes and a few base station nodes. They must be adaptive and efficient in data transmission to sink in various areas. This paper proposes an aware-routing protocol based on clustering and recursive search approaches. The paper focuses on the energy efficiency issue with various measures such as prolonging network lifetime along with reducing energy consumption in the sensor nodes and increasing the system reliability. Our proposed protocol consists of two phases. In the first phase (network development phase), the sensors are placed into virtual layers. The second phase (data transmission) is related to routes discovery and data transferring so it is based on virtual-based Classic-RBFS algorithm in the lake of energy problem environments but, in the nonchargeable environments, all nodes in each layer can be modeled as a random graph and then begin to be managed by the duty cycle method. Additionally, the protocol uses new topology control, data aggregation, and sleep/wake-up schemas for energy saving in the network. The simulation results show that the proposed protocol is optimal in the network lifetime and packet delivery parameters according to the present protocols.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Walaa M. El-Sayed ◽  
Hazem M. El-Bakry ◽  
Salah M. El-Sayed

Wireless sensor networks (WSNs) are periodically collecting data through randomly dispersed sensors (motes), which typically consume high energy in radio communication that mainly leans on data transmission within the network. Furthermore, dissemination mode in WSN usually produces noisy values, incorrect measurements or missing information that affect the behaviour of WSN. In this article, a Distributed Data Predictive Model (DDPM) was proposed to extend the network lifetime by decreasing the consumption in the energy of sensor nodes. It was built upon a distributive clustering model for predicting dissemination-faults in WSN. The proposed model was developed using Recursive least squares (RLS) adaptive filter integrated with a Finite Impulse Response (FIR) filter, for removing unwanted reflections and noise accompanying of the transferred signals among the sensors, aiming to minimize the size of transferred data for providing energy efficient. The experimental results demonstrated that DDPM reduced the rate of data transmission to ∼20%. Also, it decreased the energy consumption to 95% throughout the dataset sample and upgraded the performance of the sensory network by about 19.5%. Thus, it prolonged the lifetime of the network.


Sign in / Sign up

Export Citation Format

Share Document