PECA

Author(s):  
Maytham Safar ◽  
Hasan Al-Hamadi ◽  
Dariush Ebrahimi

Wireless sensor networks (WSN) have emerged in many applications as a platform to collect data and monitor a specified area with minimal human intervention. The initial deployment of WSN sensors forms a network that consists of randomly distributed devices/nodes in a known space. Advancements have been made in low-power micro-electronic circuits, which have allowed WSN to be a feasible platform for many applications. However, there are two major concerns that govern the efficiency, availability, and functionality of the network—power consumption and fault tolerance. This paper introduces a new algorithm called Power Efficient Cluster Algorithm (PECA). The proposed algorithm reduces the power consumption required to setup the network. This is accomplished by effectively reducing the total number of radio transmission required in the network setup (deployment) phase. As a fault tolerance approach, the algorithm stores information about each node for easier recovery of the network should any node fail. The proposed algorithm is compared with the Self Organizing Sensor (SOS) algorithm; results show that PECA consumes significantly less power than SOS.

Author(s):  
Maytham Safar ◽  
Hasan Al-Hamadi ◽  
Dariush Ebrahimi

Wireless sensor networks (WSN) have emerged in many applications as a platform to collect data and monitor a specified area with minimal human intervention. The initial deployment of WSN sensors forms a network that consists of randomly distributed devices/nodes in a known space. Advancements have been made in low-power micro-electronic circuits, which have allowed WSN to be a feasible platform for many applications. However, there are two major concerns that govern the efficiency, availability, and functionality of the network—power consumption and fault tolerance. This paper introduces a new algorithm called Power Efficient Cluster Algorithm (PECA). The proposed algorithm reduces the power consumption required to setup the network. This is accomplished by effectively reducing the total number of radio transmission required in the network setup (deployment) phase. As a fault tolerance approach, the algorithm stores information about each node for easier recovery of the network should any node fail. The proposed algorithm is compared with the Self Organizing Sensor (SOS) algorithm; results show that PECA consumes significantly less power than SOS.


2021 ◽  
Vol 17 (1) ◽  
pp. 1-6
Author(s):  
Sama Sabah ◽  
Muayad Croock

Energy consumption problems in wireless sensor networks are an essential aspect of our days where advances have been made in the sizes of sensors and batteries, which are almost very small to be placed in the patient's body for remote monitoring. These sensors have inadequate resources, such as battery power that is difficult to replace or recharge. Therefore, researchers should be concerned with the area of saving and controlling the quantities of energy consumption by these sensors efficiently to keep it as long as possible and increase its lifetime. In this paper energy-efficient and fault-tolerance strategy is proposed by adopting the fault tolerance technique by using the self-checking process and sleep scheduling mechanism for avoiding the faults that may cause an increase in power consumption as well as energy-efficient at the whole network. this is done by improving the LEACH protocol by adding these proposed strategies to it. Simulation results show that the recommended method has higher efficiency than the LEACH protocol in power consumption also can prolong the network lifetime. In addition, it can detect and recover potential errors that consume high energy.


2019 ◽  
Vol 2 (1) ◽  
pp. 43-52
Author(s):  
Alireza Alikhani ◽  
Safa Dehghan M ◽  
Iman Shafieenejad

In this study, satellite formation flying guidance in the presence of under actuation using inter-vehicle Coulomb force is investigated. The Coulomb forces are used to stabilize the formation flying mission. For this purpose, the charge of satellites is determined to create appropriate attraction and repulsion and also, to maintain the distance between satellites. Static Coulomb formation of satellites equations including three satellites in triangular form was developed. Furthermore, the charge value of the Coulomb propulsion system required for such formation was obtained. Considering Under actuation of one of the formation satellites, the fault-tolerance approach is proposed for achieving mission goals. Following this approach, in the first step fault-tolerant guidance law is designed. Accordingly, the obtained results show stationary formation. In the next step, tomaintain the formation shape and dimension, a fault-tolerant control law is designed.


Fault Tolerant Reliable Protocol (FTRP) is proposed as a novel routing protocol designed for Wireless Sensor Networks (WSNs). FTRP offers fault tolerance reliability for packet exchange and support for dynamic network changes. The key concept used is the use of node logical clustering. The protocol delegates the routing ownership to the cluster heads where fault tolerance functionality is implemented. FTRP utilizes cluster head nodes along with cluster head groups to store packets in transient. In addition, FTRP utilizes broadcast, which reduces the message overhead as compared to classical flooding mechanisms. FTRP manipulates Time to Live values for the various routing messages to control message broadcast. FTRP utilizes jitter in messages transmission to reduce the effect of synchronized node states, which in turn reduces collisions. FTRP performance has been extensively through simulations against Ad-hoc On-demand Distance Vector (AODV) and Optimized Link State (OLSR) routing protocols. Packet Delivery Ratio (PDR), Aggregate Throughput and End-to-End delay (E-2-E) had been used as performance metrics. In terms of PDR and aggregate throughput, it is found that FTRP is an excellent performer in all mobility scenarios whether the network is sparse or dense. In stationary scenarios, FTRP performed well in sparse network; however, in dense network FTRP’s performance had degraded yet in an acceptable range. This degradation is attributed to synchronized nodes states. Reliably delivering a message comes to a cost, as in terms of E-2-E. results show that FTRP is considered a good performer in all mobility scenarios where the network is sparse. In sparse stationary scenario, FTRP is considered good performer, however in dense stationary scenarios FTRP’s E-2-E is not acceptable. There are times when receiving a network message is more important than other costs such as energy or delay. That makes FTRP suitable for wide range of WSNs applications, such as military applications by monitoring soldiers’ biological data and supplies while in battlefield and battle damage assessment. FTRP can also be used in health applications in addition to wide range of geo-fencing, environmental monitoring, resource monitoring, production lines monitoring, agriculture and animals tracking. FTRP should be avoided in dense stationary deployments such as, but not limited to, scenarios where high application response is critical and life endangering such as biohazards detection or within intensive care units.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1936
Author(s):  
Tsun-Kuang Chi ◽  
Hsiao-Chi Chen ◽  
Shih-Lun Chen ◽  
Patricia Angela R. Abu

In this paper, a novel self-optimizing water level monitoring methodology is proposed for smart city applications. Considering system maintenance, the efficiency of power consumption and accuracy will be important for Internet of Things (IoT) devices and systems. A multi-step measurement mechanism and power self-charging process are proposed in this study for improving the efficiency of a device for water level monitoring applications. The proposed methodology improved accuracy by 0.16–0.39% by moving the sensor to estimate the distance relative to different locations. Additional power is generated by executing a multi-step measurement while the power self-optimizing process used dynamically adjusts the settings to balance the current of charging and discharging. The battery level can efficiently go over 50% in a stable charging simulation. These methodologies were successfully implemented using an embedded control device, an ultrasonic sensor module, a LORA transmission module, and a stepper motor. According to the experimental results, the proposed multi-step methodology has the benefits of high accuracy and efficient power consumption for water level monitoring applications.


Sign in / Sign up

Export Citation Format

Share Document