Numerical Estimation of Thermal Conductivity in Copper and Superalloy Matrix Composites

2005 ◽  
pp. 985-988
Author(s):  
Diego Alcaraz ◽  
F. Alhama
2005 ◽  
Vol 475-479 ◽  
pp. 985-988 ◽  
Author(s):  
Diego Alcaraz ◽  
F. Alhama

Using a steady-state 2-D network model to simulate the thermal behaviour of copper and superalloy matrix composites, reinforced with different types of randomly distributed continuous fibers, the limit values of thermal conductivity are established for the analysed composites. A large number of random distributions for each matrix-fiber combination is tested to assess the accuracy of the numerical results. The influence of the type of fiber, its distribution and its proportion is shown graphically. Examples of continuous fiber metal matrix composites (continuous MMCs), such as those of copper and Incoloy 907 matrices, are studied.


2014 ◽  
Vol 564 ◽  
pp. 455-460
Author(s):  
Faiz Ahmad ◽  
Muhammad Aslam ◽  
M. Rafi Raza ◽  
Ali S. Muhsan ◽  
M.irfan Shirazi

The performance of the micro-chip is affected by overheating and hence reduces the efficiency of electronic devices. The development of high thermal conductivity material can solve problems associated with dissipation of heat from the micro-chips. Thermal conductivity for carbon nanotubes (CNTs) are in the ranges of 1200-3000 W/moK which considered as the best candidate material for heat sink applications. This research investigates the fabrication of CNTs reinforced copper composites using powder metallurgy method. Copper powder and CNTs were ball milled to prepare mixtures and compacted at 600 MPa to fabricate test samples. The compacted test samples were sintered in argon atmosphere at 850oC. Sintered density of CNTs/Cu composites was measured and compared with theoretical density. Density data showed that 98% sintered density was achieved. Optical and scanning electron microscopic (SEM) examination of sintered compacts showed good grain growth, however porosity was also noted in sintered samples. Field emission scanning electron microscopy (FESEM) showed well dispersion of CNTs in copper matrix and interfacial bonding between copper particle and CNTs. In this experiment, the addition of 2 % vol. CNTs in copper matrix showed 9% increase in thermal conductivity approximately compared to thesintered pure copper.


Author(s):  
Carol Bryant ◽  
James L. Rutledge

Abstract Increasing interest in the use of ceramic matrix composites (CMCs) for gas turbine engine hot gas path components requires a thorough examination of the thermal behavior one may expect of such components. Their highly anisotropic thermal conductivity is a substantial departure from traditional metallic components and can influence the temperature distribution in surprising ways. With the ultimate surface temperature dependent upon the internal cooling scheme, including cooling from within the film cooling holes themselves, as well as the external film cooling, the relative influence of these contributions to cooling can be affected by the directionality of the thermal conductivity. Conjugate heat transfer computational simulations were performed to evaluate the effect of anisotropy in the leading edge region of a turbine component. The leading edge region is modeled as a fully film-cooled half cylinder with a flat afterbody. The anisotropic directionality of the thermal conductivity is shown to have a significant effect on the temperature distribution over the surface of the leading edge. While structural considerations with CMC components are often paramount, designers should be aware of the thermal ramifications associated with the selection of the CMC layup.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341025 ◽  
Author(s):  
YU HONG ◽  
XIAOLI CHEN ◽  
WENFANG WANG ◽  
YUCHENG WU

Copper-matrix composites reinforced with SiC particles are prepared by mechanical alloying. The microstructure characteristics, relative density, hardness, tensile strength, electrical conductivity, thermal conductivity and wear properties of the composites are investigated in this paper. The results indicate that the relative density, macro-hardness and mechanical properties of composites are improved by modifying the surface of SiC particles with Cu and Ni . The electrical conductivity and thermal conductivity of composites, however, are not obviously improved. For a given volume fraction of SiC , the Cu / SiC ( Ni ) has higher mechanical properties than Cu / SiC ( Cu ). The wear resistance of the composites are improved by the addition of SiC . The composites with optimized interface have lower wear rate.


2010 ◽  
Vol 150-151 ◽  
pp. 144-149
Author(s):  
Hong Wei Xing ◽  
Jin Song Zhang ◽  
Xiao Ming Cao

Copper matrix composites reinforced with 3D-SiC network (15v% and 20v% SiC) were fabricated by squeezing copper alloy into 3D-SiC network preforms. The thermo-physical properties of the copper matrix composites were investigated. The specific heat capacities of the composites were about 0.39~0.50 J•g-1•K-1. The coefficients of thermal expansion (CTEs) of the composites were found to be lower than 6.9×10-6 -1 at Room Temperature. The composites exhibited high thermal stability for 3D-SiC network advent. The thermal conductivity of the composites was in the range of 50~80W•m−1•K−1. The thermo-physical properties of Cu matrix composites had a great relationship with the structures of 3D-SiC network preforms. The thermal conductivity of the composites decreased with an increase in the volume fraction of SiC or the structures of the limbs changing compacted, but the CTEs were not completely according this rule.


2019 ◽  
Vol 144 ◽  
pp. 141-147 ◽  
Author(s):  
Dong-Guang Liu ◽  
Liang Zheng ◽  
Li Zhang ◽  
Xiao-Yue Tan ◽  
Lai-Ma Luo ◽  
...  

2005 ◽  
Vol 475-479 ◽  
pp. 3335-3338
Author(s):  
F. Alhama ◽  
Diego Alcaraz ◽  
S. Gómez-Lopera

A simple model based on the network simulation method is proposed to estimate numerically the thermal conductivity of particulate reinforced metal-matrix composites. The estimation is carried out running the model in the standard Pspice code, the computing time being negligible. The 3-D solid is discretized in 1000 cubic volume elements which represent an acceptable approximation of the shape of the particles. For each reinforcement percentage and each combination of matrix and reinforcement more than 200 tests were carried out, so that the results may be considered close to the exact values. The limit values are scarcely influenced by the effect of the 3-D geometry and basically depend on the amount of the reinforcement. Applications to aluminum and titanium matrix composites reinforced with different types of particles are presented covering a wide range of reinforcement percentages.


Sign in / Sign up

Export Citation Format

Share Document