A Study on Vacuum Diffusion Bonding of as-Extruded AZ31 Magnesium Alloy

2011 ◽  
Vol 121-126 ◽  
pp. 10-14
Author(s):  
Fei Lin ◽  
Tie Peng Li ◽  
Lu Lu Sun ◽  
Qing Sen Meng

In this investigation a study on vacuum diffusion bonding of as-extruded AZ31 magnesium alloys was carried out according to atomic diffusion theory. The bonding quality of the joints was checked by microstructure analysis, shear test and micro-hardness testing. The results showed that the diffusion temperature and holding time had a great effect on the the bonding quality of the joints. The maximum of joint shear strength was 76.2MPa with the bonding temperature being 420°C and the holding time reaching 90min.

2013 ◽  
Vol 788 ◽  
pp. 34-37
Author(s):  
Fei Lin ◽  
Jie Li ◽  
Hong Wei Zhao ◽  
Zhi Tong Chen ◽  
Qing Sen Meng

Vacuum diffusion bonding of as-extruded AZ61 magnesium alloy was investigated according to atomic diffusion theory. The effects of the diffusion temperature and holding time on the quality of the bonding joint are investigated by means of microstructure analysis, shearing strength test and microhardness testing. The shearing test results showed that the maximum shearing strength reached 51.95MPa with the temperature of 470°C and the holding time of 90min. And the diffusion temperature and holding time have a great effect on the quality of the bonding joints. The microhardness measurement results showed that the microhardness value at the bonding joint was maximum.


2013 ◽  
Vol 856 ◽  
pp. 153-158
Author(s):  
Kasigavi Chandrappa ◽  
Joel Hemanth

The diffusion bonding of Ti to Ti, Ti-Cu alloy at different temperatures ranging from 673 K to 923 K under an applied stress of 100 MPa for 1 h was studied. The observation of the microstructure reveals that sound joints between the Ti-Ti and dissimilar titanium/Copper metals sheet were successfully joined by diffusion bonding process. Ti-Cu alloy without any pores or cracks can be achieved through diffusion bonding at temperatures over 873 K under the applied stress of 100 MPa for 1 h. The bond is composed of the zones, and its width increases with the increase of bonding temperature. The Micro hardness at the interface of joints bonded under different conditions was evaluated through Micro hardness testing and the fracture mode was analyzed by SEM observation.


2019 ◽  
Vol 15 (6) ◽  
pp. 1037-1052
Author(s):  
A. Arun Negemiya ◽  
S. Rajakumar ◽  
V. Balasubramanian

Purpose The purpose of this paper is to develop an empirical relationship for predicting the strength of titanium to austenitic stainless steel fabricated by diffusion bonding (DB) process. Process parameters such as bonding pressure, bonding temperature and holding time play the main role in deciding the joint strength. Design/methodology/approach In this study, three-factors, five-level central composite rotatable design was used to conduct the minimum number of experiments involving all the combinations of parameters. Findings An empirical relationship was developed to predict the lap shear strength (LSS) of the joints incorporating DB process parameters. The developed empirical relationship was optimized using particle swarm optimization (PSO). The optimized value discovered through PSO was compared with the response surface methodology (RSM). The joints produced using bonding pressure of 14 MPa, bonding temperature of 900°C and holding time of 70 min exhibited a maximum LSS of 150.51 MPa in comparison with other joints. This was confirmed by constructing response graphs and contour plots. Originality/value Optimizing the DB parameters using RSM and PSO, PSO gives an accurate result when compared with RSM. Also, a sensitivity analysis is carried out to identify the most influencing parameter for the DB process.


2015 ◽  
Vol 787 ◽  
pp. 495-499 ◽  
Author(s):  
K. Dheenadayalan ◽  
S. Rajakumar ◽  
V. Balasubramanian

In this investigation, Commercially Pure (Cp) titanium was diffusion bonded to AA7075-T6 aluminium alloy at various temperatures of 450, 475, 500, 525 and 5500C, bonding pressure of 17, MPa and holding time of 40 minutes was applied during the diffusion bonding. The effects of reaction temperature, Bonding time and atmosphere on the diffusion welding characteristics of titanium and aluminum have been studied. The maximum Lap shear strength was found to be 89 MPa for the specimen bonded at the temperature of 525°C, Bonding Pressure 17 MPa and Holding time for 40 min.


2010 ◽  
Vol 654-656 ◽  
pp. 831-834
Author(s):  
Xiao Li Wang ◽  
Yong Qing Zhao ◽  
Hong Liang Hou ◽  
Wei Dong Zeng

The superplastic forming and diffusion bonding (SPF/DB) of hydrogenated Ti-6Al-2.8Sn-4Zr-0.5Mo-0.4Si-0.1Y (Ti600) alloys were carried out in the temperature range of 1073-1213K under 1.5MPa gas pressure. The effects of hydrogen contents and diffusion temperature on welding-on ratio of SPF/DB and microstructure of interface and matrix in Ti600 alloy were investigated by OM and SEM. According to the experimental investigation, when the parameters of SPF/DB were as follows: T=860°C, P=1.5MPa and t=70min, the welding-on ratio of Ti600 alloy with hydrogen 0.5wt% was 100 percent. However, the physical contact of Ti600 alloy without hydrogen which was related to plastic forming could not occur. Moreover, the size and amount of voids at the diffusion bonding interface decreased and diffusion bonding quality improved gradually with the increase of hydrogen content and diffusion temperature, which was attributed to the decrease of phase transformation temperature and flow stress of plastic forming as well as the release of hydrogen. After SPF/DB, the recrystallization of joint grains through the interface was formed, and the matrix of hydrogenated Ti600 alloy changed.


2014 ◽  
Vol 881-883 ◽  
pp. 1301-1306
Author(s):  
Chaiyoot Meengam ◽  
Prapas Muangjunburee ◽  
Suppachai Chainarong

SSM 356-T6 aluminium alloys generally present low weldability by fusion methods because of the sensitivity to weld solidification cracking, porosities, change microstructure in weld zone and other defects in the fusion zone. Diffusion bonding can be deployed successfully with aluminium alloys. This paper presents the technique to conserve the globular weld structure of SSM 356-T6 aluminium alloy. The effect of joining parameters on the microstructure and mechanical properties of diffusion bonding butt joints of semi-solid metal 356-T6 aluminium alloy were investigated by conditions as follows: contact pressure at 0.4, 0.9, 1.8, 2.4 and 2.7 MPa, for 3 hours holding time and temperature at 495°C under argon atmosphere at 4 liters per minute. The results showed that condition used contact pressure 2.4 MPa, with 3 hours holding time and temperature at 495°C, under argon atmosphere provided. The highest joint strength reaching to 182.2 MPa, which had joint efficiency of 61.34 percents compared with base material. In addition, microstructure in welded zone after welding is still in globular structure, but the grain size was increased when the higher bonding temperature was used. The results of this investigation have shown that an average hardness is around 121.2 HV.


2006 ◽  
Vol 324-325 ◽  
pp. 979-982 ◽  
Author(s):  
Zi Liang An ◽  
Shan Tung Tu

Direct diffusion bonding of 316L stainless steel was performed at 850-1100°C for 1-3 h under a pressure of 10MPa in this study. The effect of bonding temperature and holding time on mechanical performances of the joints was investigated. Tensile tests were conducted to evaluate strength and elongation of the joints at room temperature and elevated temperature of 550°C. The microstructure and fracture surfaces of the joints were examined by optical microscope (OM) and scanning electronic microscope (SEM). The results indicated that the elongation of the joints increased with the increase of bonding temperature and holding time. However, overlong holding time had a side effect on the strength of the joint. Moreover, the change of the mechanical properties was closely related to the variation of the microstructure of the joints. The X-ray diffraction (XRD) analysis revealed that FeCr and Fe0.64Ni0.36 were formed at the DB6 joint during bonding process. It is suggested that FeCr should be detrimental to the improvement of high temperature strength of the joint.


2015 ◽  
Vol 16 (2) ◽  
pp. 291
Author(s):  
Jia Li ◽  
Guo Hao ◽  
Guo Zhiping ◽  
Miao Shujing

<p>By MEMS packaging test platform for bonding process of bonding temperature and bonding time,and test silicon specifications experimental study.Firstly,according to the anodic bonding principle,the main factors to detemine the effect of bonding quality.Secodly,change the bonding temperature,bonding time,and test wafer size and other parameters,glass silicon bonding contrast test.Finally,the calculation and analysis of comparative test of each group is bonded porosity,summanrized the factors that affect the quality of the bonding and bonding to achieve the best results in the bonding conditions.Experimental results indicate that when the bonding voltage of 1200V,bonding temperature of 445-455c,bonding time is 60s,the void fractin is less than 5%.Glass and Silicon wafer bonding quality can achieve the best. The experimental results in order to improve the glass silicon bonding quaity provides the basis.</p>


2014 ◽  
Vol 941-944 ◽  
pp. 81-88
Author(s):  
Jia Geng Liu ◽  
Jing Tao Han ◽  
Jing Liu ◽  
Shuai Ji

The diffusion bonding process of commercially pure titanium to Q235B is achieved using copper as interlayer. The microstructure, component distribution and phase formation at the interface is analyzed by the use of microscope, SEM and XRD, the mechanical property is also investigated through the shear test. There is a good bond at the interface from 900 to 1000°C, no big cracks and voids, Q235B/Cu interface is straight, and Cu/TA1 interface shows waviness. With the increase of diffusion temperature from 900 to 1000°C, the shear strength increases first ,and then drops, however, with the increase of holding time from 30 to 60 minutes, the shear strength drops all the time, the maximum shear strength is 80MPa at 950°C for holding time of 30 minutes.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1437
Author(s):  
Zeming Wang ◽  
Xu Yang ◽  
Jing Wang ◽  
Zhonglin Xiao ◽  
Fugong Qi ◽  
...  

The development of welding technology for zirconium alloy has great significance on the safety, stability, and reliability of the operation of the nuclear reactor. In this work, vacuum diffusion bonding of Zr-4 alloy was studied at the diffusion temperature ranging from 760 to 820 °C with holding times of 30–90 min. The effects of diffusion bonding temperature and holding time on the interfacial microstructure and mechanical properties of the diffusion bonded Zr-4 alloy joints were investigated in detail, and the relationship between the interfacial microstructure and shear strength of the diffusion bonded joints was discussed. The results show that the interface bonding ratio of the diffusion bonded Zr-4 joint gradually increased from 74% to 95% with the increasing of bonding temperature. In addition, the grain size of the base material became a larger and brittle second phase composed of Zr(Cr, Fe)2 and eutectic α-Zr + Zr(Fe, Cr)2 formed in the joint with the increase of the temperature as well as the extension of the bonding time. The highest shear strength of 349 MPa was obtained at 800 °C for 30 min under 7 MPa, and the crack of the joint was primarily propagated along with the base material rather than the bonded interface.


Sign in / Sign up

Export Citation Format

Share Document