The Pressure Relief Control Technology of the Defects Method on Dynamic Pressure Area in Zhaogezhuang Coal Mine

2012 ◽  
Vol 152-154 ◽  
pp. 1097-1101
Author(s):  
Zhong Dong Yang

Because of deep mining and the serious dynamic pressure appearance in Zhaogezhuang coal mine, this paper has statistical and analyzed phenomena of dynamic pressure appearance, and proposed the engineering defects method to relief the pressure for high stress zone of working face and roadway according to the actual situation, which can transfer the stress distribution of coal rock and release impact energy. Based on the numerical simulation analysis of pressure relief on cavity defects, it has analyzed the feasibility of pressure relief using engineering defect, acquired good effect of pressure relief and achieved the safety of coal mining in the 2337E working face.

2014 ◽  
Vol 675-677 ◽  
pp. 1395-1400 ◽  
Author(s):  
Wen Zhou Li

AH Wilson coal pillar was used widely as it’s simply, but it’s appeared large error for field implementation as its difference assume conditions, mine depth H and mine thickness m. AH Wilson coal pillar formula was studied precisely by in-site stresses test and numerical simulation analysis for N3-5 top coal caving working face of CHANGCUN coal mine in Lu’an coal district of China, then modified AH Wilson formula was put forward as L = 0.008mH + 8.4,then the precise coal pillar size 18m was used in filed implementation, filed testing proved coal pillar size was reasonable.


2021 ◽  
Vol 13 (8) ◽  
pp. 4412
Author(s):  
Houqiang Yang ◽  
Nong Zhang ◽  
Changliang Han ◽  
Changlun Sun ◽  
Guanghui Song ◽  
...  

High-efficiency maintenance and control of the deep coal roadway surrounding rock stability is a reliable guarantee for sustainable development of a coal mine. However, it is difficult to control the stability of a roadway that locates near a roadway with large deformation. With return air roadway 21201 (RAR 21201) in Hulusu coal mine as the research background, in situ investigation, theoretical analysis, numerical simulation, and engineering practice were carried out to study pressure relief effect on the surrounding rock after the severe deformation of the roadway. Besides, the feasibility of excavating a new roadway near this damaged one by means of pressure relief effect is also discussed. Results showed that after the strong mining roadway suffered huge loose deformation, the space inside shrank so violently that surrounding rock released high stress to a large extent, which formed certain pressure relief effect on the rock. Through excavating a new roadway near this deformed one, the new roadway could obtain a relative low stress environment with the help of the pressure relief effect, which is beneficial for maintenance and control of itself. Equal row spacing double-bearing ring support technology is proposed and carried out. Engineering practice indicates that the new excavated roadway escaped from possible separation fracture in the roof anchoring range, and the surrounding rock deformation of the new roadway is well controlled, which verifies the pressure relief effect mentioned. This paper provides a reference for scientific mining under the condition of deep buried and high stress mining in western China.


2013 ◽  
Vol 734-737 ◽  
pp. 714-721
Author(s):  
Qing Feng Li ◽  
Chuan Qu Zhu

With the increase of mining intensity, mining causes significant dynamic disturbance and dynamic disasters, which have exerted a great influence on the safety and high-efficiency of production. This article based on the study of the displacement tendency of the rock masses on or under fractured face of the key layer, deduces the vertical stress calculation formula of the rock mass under the fractured face which indicates that the vertical stress is correlative with the length of fault block in key layer, the depth of key layer, the distance between key layer and mining coal seam, the equivalent elastic modulus of coal stratum underlying the key layer and so on; And then by numerical simulation, it studies the dynamic disturbance effect on front coal-rock masses as the key layer fractures which shows that dynamic disturbance effect caused by high intensity mining is relatively conspicuous on the fractured stratum (the key layer), the stratum under the fractured one and the stratum in the advancing direction of working face; As for the stratum on the fractured one (the key layer),the dynamic disturbance effect becomes less conspicuous as they grow farther away from the fractured one.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Delong Zou ◽  
Xiang Zhang

When stratified mining is adopted in high-gas and extrathick coal seam, a large amount of pressure-relief gas of the lower layer flows into the upper layer goaf along the cracks in the layer, resulting in upper layer working face to frequently exceed the gas limit. And ordinary drilling can no longer meet the requirements of the pressure-relief gas drainage of the lower layer. The 205 working face of Tingnan Coal Mine is taken as the test background in this paper, and based on the “pressure-relief and flow-increase” effect of the lower layer under the action of mining stress during the upper layer mining, the gas drainage of kilometer directional drilling in lower layer is studied. According to the distribution characteristics of support pressure before and after the working face, the pressure-relief principle, fracture development characteristics, and gas migration law of the lower layered coal body are analyzed in the process of advancing the upper layered working face in the extrathick coal seam with high gas. The maximum depth of goaf damage is calculated theoretically, and the Flac3D numerical simulation of the failure deformation of the 205 working face floor is carried out. It is found that the maximum depth of plastic failure of the lower layer is about 13 m. According to the plastic deformation of the lower layer under different vertical depths and the movement of coal and rock mass, it is determined that the reasonable range of kilometer directional drilling in the lower layer is 6–9 m below the floor vertical depth. From 15 m to 45 m in the two parallel grooves, there is no fracture failure with a sharp increase or decrease in the displacement in the local range. Meanwhile, in this part, the roof falling behind is not easy to compaction, and the displacement of the floor is large, which does not cause plastic damage. The degree of pressure relief is more sufficient, and the permeability of the lower layer is good. Therefore, drilling should be arranged as much as possible along the working face in this tendency range. The determination of reasonable arrangement range of kilometer directional drilling in extrathick coal seam provides reference index and theoretical guidance for industrial test of working face and also provides new ideas for gas control of stratified mining face in high-gas and extrathick coal seam.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Xingping Lai ◽  
Huicong Xu ◽  
Jingdao Fan ◽  
Zeyang Wang ◽  
Zhenguo Yan ◽  
...  

In order to explore the mechanism of coal pillar rock burst in the overlying coal body area, taking W1123 working face of Kuangou Coal Mine as the engineering background, the full mining stage of W1123 is simulated by FLAC3D. It is found that the high stress concentration area has appeared on both sides of the coal pillar when W1123 does not start mining. With the advance of the working face, the high stress concentration area forms X-shaped overlap. There is an obvious difference in the stress state between the coal pillar under the solid coal and the coal pillar under the gob in W1123. The concrete manifestation is that the vertical stress of the coal pillar below the solid coal is greater than the vertical stress of the coal pillar below the gob. The position of the obvious increase of the stress of the coal pillar in the lower part of the solid coal is ahead of the advancing position of the working face, and the position of the obvious increase of the stress of the lower coal pillar in the gob lags behind the advancing position of the working face. At the same time, in order to accurately reflect the true stress environment of coal pillars, the author conducted a physical similarity simulation experiment in the laboratory to study the local mining process of the W1123 working face, and it is found that under the condition of extremely thick and hard roof, the roof will be formed in the gob, the mechanical model of roof hinged structurer is constructed and analyzed, and the results show that the horizontal thrust of roof structure increases with the increase of rotation angle. With the development of mining activities, the self-stable state of the high stress balance in the coal pillar is easily broken by the impact energy formed by the sudden collapse of the key strata. Therefore, the rock burst of coal pillar in the overlying coal body area is the result of both static load and dynamic load. In view of the actual situation of the Kuangou Coal Mine, the treatment measures of rock burst are put forward from the point of view of the coal body and rock mass.


2021 ◽  
Author(s):  
Jindong Cao ◽  
Xiaojie Yang ◽  
Ruifeng Huang ◽  
Qiang Fu ◽  
Yubing Gao

Abstract The high stress of the surrounding rock of Hexi Coal Mine easily leads to severe deformation of the retracement channel and the appearance of the mine pressure during the retreat severely affects the stability of the roadway. In order to solve the above problems, a roadway surrounding rock control technology is proposed and tested. The bidirectional energy-concentrated tensile blasting technology is used to perform directional cutting to cut off the stress propagation path. Firstly, the deformation mechanism of the roof is analyzed by establishing the deformation mechanical model of the roof of the retracement channel. Then, according to the geological conditions of working face 3314 and theoretical calculation, the key parameters of roof cutting and pressure releasing of retracement channel are determined, and through the numerical analysis of its cutting effect, the length of cutting seam is 11.5m, and the cutting angle is 10°. Finally, a field test is carried out on the retracement channel of 3314 working face to verify the effect of roof cutting. The results show that the deformation of the retracement channel and the main roadway is very small. In the process of connecting the working face and the retracement channel, the maximum roof to floor convergence is 141mm, and the two sides convergence is 79mm. After the hydraulic support was retracted, the maximum roof to floor convergence of the surrounding rock is 37 mm, and the two sides convergence is 33mm. The roof cutting and pressure releasing of the retracement channel ensures the safe evacuation of the equipment and the stability of the main roadway. The cutting effect is obvious for the release of pressure, which is of great significance to engineering practice.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Wenjing Liu ◽  
Deyu Qian ◽  
Xingguo Yang ◽  
Sujian Wang ◽  
Jinping Deng ◽  
...  

Rock burst is a typical dynamic disaster in deep underground coal mining. Based on the support problems of the deep roadways in fully mechanized caving face 401111 of Hujiahe Coal Mine suffering from rock burst in Shaanxi Province of China, the failure law and influencing factors of the surrounding rock of the roadway are analyzed. The results show that the deformation of surrounding rock in the roadway shows the characteristics of elastic, plastic transformation, rheology, and expansion. At the same time, it has the typical characteristics of deep roadway, such as the fast deformation speed, long duration, asymmetric deformation, and large loose broken area of surrounding rock. Based on the principle of “strengthening support in shallow zones” and “deep pressure relief in deep zones” in the surrounding rock, the control scheme of surrounding rock in the return roadway of fully mechanized caving working face 401111 is proposed by taking the large diameter pressure relief and deep hole blasting as the main means of pressure relief. The practice shows that the surrounding rock of the return roadway is relatively stable after the implementation of the new scheme, which shows that the design of the new support scheme is reasonable and reliable. It is of great significance for the stability control of surrounding rock of the mining roadway suffering from rock burst.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiaojie Yang ◽  
Chenkang Liu ◽  
Honglei Sun ◽  
Songlin Yue ◽  
Yuguo Ji ◽  
...  

Affected by the mining activities of the working face, the surrounding rock of the roadway is easily deformed and destroyed. For deep buried roadways, the deformation and destruction of the surrounding rock is particularly prominent. Under the influence of in situ stress fluctuation, 3−1103 tailgate of the Hongqinghe coal mine was in a complex stress environment with a maximum stress exceeding 20 MPa. Affected by mining stress, the roadway behind the working face was seriously deformed. In order to alleviate the deformation of the roadway, directional blasting and cutting measures for the 3−1103 tailgate were adopted in this paper. The mechanism of crack propagation in single-row to three-hole directional blasting was revealed by numerical simulation. The blasted rock was divided into three regions according to the crack condition. The numerical analysis of the cutting heights of 0 m, 10 m, 12 m, and 14 m, respectively, showed the stress peaks of different cutting heights and the deformation law of the surrounding rock. The pressure relief effect was the best at 14 m cutting height. At this time, the peak stress was 39 MPa with the smallest roadway deformation. Based on numerical simulation and theoretical analysis results, engineering tests were carried out. Field monitoring showed that the deformation of the roadway was inversely proportional to the roof cutting height. The higher the cutting height is, the more preferential the roadway is to reach the stable state. It can be concluded that directional blasting can change the surrounding rock structure, control the deformation of the roadway, and play a role in pressure relief. It provides a new measure to control roadway deformation.


2019 ◽  
Vol 38 (1) ◽  
pp. 111-136 ◽  
Author(s):  
Jiangwei Liu ◽  
Changyou Liu ◽  
Xuehua Li

After mining the upper-goaf side, large coal pillars and part of hard roof exposed above the pillars remain. The hard roof can significantly deform the roadway by transferring high stress through coal pillars to the roadway. This paper reports the use of hydraulic fracturing technology to cut the hard roof on both sides (i.e. the broken roof slides to the goaf) to relieve the pressure. The position of the roof fracture is the key to controlling the pressure relief. The bearing characteristics of the large coal pillars and hard roof are analyzed to establish a mechanical model of the broken-roof sliding instability after directional fracturing and determine the width of the coal pillars that can collapse under maximum overburden load on coal pillars as a reasonable hydraulic fracturing position. The results show that the distance from the mine gateway to the fracture location increases with increasing hard-roof length, coal pillar depth, coal pillar thickness (mining height), and goaf width. In addition, the distance to the mine gateway decreases with increasing coal strength, support of the coal pillar by the anchor rod, cohesive force, and internal friction angle of the coal–rock interface. Engineering tests were applied in coal roadway 5107 of coal seam 5# of the Baidong Coal Mine of the Datong Coal Mine Group. Given the site conditions, a reasonable fracturing length of 8.8 m was obtained. Next, directional hydraulic fracturing was implemented. The comparison of the roof deformation before and after fracturing suggests that this method reduces the local stress concentration in coal pillars, which allows the surrounding rock deformation in roadway 5107 to be controlled.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ai Chen

Reasonable width of gob-side coal pillar can reduce the waste of coal resources and is conducive to roadway stability. According to the distribution of internal and external stress fields at the working face, a method for determining the width of gob-side coal pillar was proposed. The coal pillar and roadway should be set within the internal stress field, and support is provided through the anchored part and the intact part of the coal pillar. The method was used in the design of the coal pillar at No. 130205 working face of Zaoquan Coal Mine. The calculation results indicated that the width of a coal pillar suitable for gob-side entry is 6.0 m. It is reasonable to arrange the roadway and coal pillar in the low-stress zone with a width of 11 m. During tunnelling of roadway and stoping of the working face, the deformation of the roadway increased with a reduction in the distance from the working face. Even during stoping of the working face, there was an approximately 1.5 m intact zone in the coal pillar. This indicates that the proposed method of designing small coal pillar of gob-side entry driving is reliable.


Sign in / Sign up

Export Citation Format

Share Document