Electrochemical Behavior of Potassium Zinc Phosphates Extract and Coating

2012 ◽  
Vol 152-154 ◽  
pp. 64-67 ◽  
Author(s):  
Dong Ping Wei ◽  
Shao Mei Ma ◽  
Ze Guang Zhou ◽  
Zeng Wei Huang ◽  
Ai Qun Yuan ◽  
...  

The electrochemical corrosion inhibitions of potassium zinc phosphate were studied by polarization, open circuit potential measurements, electrochemical impedance of the pigment extract and coating immersion test. Dynamic analysis shows that in pH=7 3.5% NaCl extract, KZn2(PO4)(HPO4) functions as a cathodic inhibitor on steel and its efficiency is even superior to other phosphates. The inhibiting efficiency of the pigments on steel decrease in the order: KZn2(PO4)(HPO4) > aluminum zinc phosphate > zinc phosphate ≧ aluminum triphosphate The coating tests show that potassium zinc phosphate can efficiently enhance the inhibition properties of coating and prevent the erosion of the corrosive medium by improving the barrier and hydrophobicity of the coating. The anticorrosive property of the pigments decrease in the order: KZn2(PO4)(HPO4)> aluminum zinc phosphate > zinc phosphate ≈APW-1.

2011 ◽  
Vol 415-417 ◽  
pp. 1806-1809
Author(s):  
Dong Ping Wei ◽  
Sheng Fu Wu ◽  
Zeng Wei Huang ◽  
Shao Mei Ma ◽  
An Ping Liao ◽  
...  

A new synthesis method namely hydrolysis precipitation was used to prepare Zn3(PO4)2•4H2O. Structural characteristics of products were investigated by X-ray Diffraction, scanning electron microscope and chemical analysis. The electrochemical corrosion inhibitions of title zinc phosphate were studied by electrochemical impedance of coating immersion test. The results show that the obtained product is a highly crystalline, micronized and lamellar Zn3(PO4)2•4H2O. Comparing with commercial zinc phosphate, the synthesized lamellar microcrystalline product has excellent anticorrosive property and dispersibility.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
J. Porcayo-Calderon ◽  
R. A. Rodriguez-Diaz ◽  
E. Porcayo-Palafox ◽  
J. Colin ◽  
A. Molina-Ocampo ◽  
...  

The effect of Cu addition on the electrochemical corrosion behavior of Ni3Al intermetallic alloy was investigated by potentiodynamic polarization, open-circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy in 1.0 M H2SO4solution. Performance of the pure elements (Cu, Ni, and Al) was also evaluated. In general, Cu addition improved the corrosion resistance of Ni3Al. Electrochemical measurements show that corrosion resistance of Ni3Al-1Cu alloy is lower than that of other intermetallic alloys and pure elements (Ni, Cu, and Al) in 1.0 M H2SO4solution at 25°C. Surface analysis showed that the Ni3Al alloys are attacked mainly through the dendritic phases, and Cu addition suppresses the density of dendritic phases.


2016 ◽  
Vol 869 ◽  
pp. 716-720
Author(s):  
Osmar dos Reis Antunes Jr. ◽  
Larissa Aparecida Corrêa Matos ◽  
Larissa Oliveira Berbel ◽  
Claudia Schlindwein ◽  
Paulo Vitor Sochodolak ◽  
...  

This work proposes the development of a niobium phosphate coating (PNb) to replace the zinc phosphating, which is very aggressive to the environment and human health. The metallic material utilized was carbon steel (SAE 1010), which was coated with sunbathing - gel containing phosphate and niobium. A traditional zinc phosphate coating was used for comparison of results. The samples were characterized by scanning electron microscopy (SEM), dispersive energy spectroscopy (DES), open circuit potential, electrochemical impedance spectroscopy and anodic polarization. The results demonstrated that the samples coated with niobium phosphate have more surface nobility and greater corrosion resistance.


2008 ◽  
Vol 373-374 ◽  
pp. 556-559 ◽  
Author(s):  
Rui Yan ◽  
Hang Wu ◽  
S.K. Yu ◽  
Shi Ning Ma ◽  
Bin Shi Xu

Electrochemical corrosion behaviors of two common-used ship coatings——epoxy aluminum coating, chloride rubber iron red coating and their composite coatings immersed in 3.5%NaCl solution were investigated using electrochemical impedance spectroscopy combined with open circuit potential measurements and SEM micrograph analysis. Potential-time result indicates that the free corrosion potential of these three coatings with immersion time are more positive than that of metal substrate, which can serve as barrier layer to protect metal substrate from corrosion. During the course of immersion, increasingly negative shift potentials with time reveal the growth of electrochemical area of anode and corrosion takes place continuously. EIS shows that corrosive species can penetrate into coatings and reach the coating/substrate interface promptly, causing the decrease of its shielding role and the beginning of electrochemical corrosion. SEM micrographs suggest that coatings were compact and continuous compared with obviously coarse and loose after corrosion, indicating the penetration of corrosive species destroys cross linkage of coatings. Composite coatings present better protection performance, displaying the effect of “1+1>2” remarkably.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 454 ◽  
Author(s):  
Arman Dastpak ◽  
Kirsi Yliniemi ◽  
Mariana de Oliveira Monteiro ◽  
Sarah Höhn ◽  
Sannakaisa Virtanen ◽  
...  

In this study, a waste of biorefinery—lignin—is investigated as an anticorrosion coating on stainless steel. Corrosion behavior of two lignin types (hardwood beech and softwood spruce) was studied by electrochemical measurements (linear sweep voltammetry, open circuit potential, potentiostatic polarization, cyclic potentiodynamic polarization, and electrochemical impedance measurements) during exposure to simulated body fluid (SBF) or phosphate buffer (PBS). Results from linear sweep voltammetry of lignin-coated samples, in particular, demonstrated a reduction in corrosion current density between 1 and 3 orders of magnitude cf. blank stainless steel. Furthermore, results from cross cut adhesion tests on lignin-coated samples demonstrated that the best possible adhesion (grade 0) of ISO 2409 standard was achieved for the investigated novel coatings. Such findings suggest that lignin materials could transform the field of organic coatings towards more sustainable alternatives by replacing non-renewable polymer coatings.


2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Sunčana Smokvina Hanza ◽  
Ladislav Vrsalović ◽  
Lovro Štic ◽  
Lovro Liverić

This paper presents results of the corrosion investigations of specimens made from finished parts for the automotive industry, produced by high-pressure die casting and gravity die casting process of six Al-Si alloys (40000 series). Open circuit potential and potentiodynamic polarization measurements have been performed using a potentiostat with three-electrode set-up in 0.6 M NaCl naturally aerated solution. Microstructural characterization before and after electrochemical investigations has been carried out with optical microscope to establish the connection between microstructure and corrosion parameters of investigated alloys and to analyze and record surface changes of each sample due to electrochemical corrosion. All alloys show good corrosion resistance, which manifests with low values of corrosion rates, calculated from the corrosion current densities obtained from potentiodynamic polarization measurements. Differences in electrochemical behavior appear due to the distinctions in their chemical composition and microstructure. The type of casting process does not affect electrochemical behavior of Al-Si alloys.


2012 ◽  
Author(s):  
Ανδρόνικος Μπαλάσκας

Υβριδικές επιστρώσεις οργανικά τροποποιημένων πυριτικών ενώσεων και εποξειδικώνρητινών (Organically Modified Silicates, ORMOSILs – epoxy) εφαρμόστηκαν στο κράμααργιλίου 2024-Τ3 και σε γαλβανισμένο χάλυβα σε υψηλές θερμοκρασίες (Hot Dip GalvanizedSteel, HDGS) προκειμένου αυτές να προστατεύσουν τα υποστρώματα από τη διάβρωση. Για τηνβελτίωση της αντοχής των επιστρώσεων στην διάβρωση ενσωματώθηκαν στην πολυμερικήμήτρα νανοπεριέκτες από μολυβδαινικό δημήτριο (CeMo) και οξείδιο του τιτανίου (TiO2),καθώς και pH-ευαίσθητα οργανικά νανοδοχεία πληρωμένα με τους αναστολείς διάβρωσης 2-μερκαπτοβενζοθειαζόλιο, 8-υδροξυκινολίνη, 1H-βενζοτριαζολο-4-σουλφονικό οξύ καιεξαφλουοροτιτανικό οξύ.Οι υβριδικές επιστρώσεις εφαρμόστηκαν στο υπόστρωμα με τη διαδικασία εμβάπτισης.Η μορφολογία των επιστρώσεων εξετάστηκε με ηλεκτρονική μικροσκοπία σάρωσης (ScanningElectron Microscopy (SEM)). Η σύνθεση και η δομή τους μελετήθηκε με υπέρυθρηΦασματοσκοπία μετασχηματισμού Fourier (FT-IR) και με μικροανάλυση με φθορισμομετρίαακτίνων Χ (Energy Dispersive X-Ray Analysis (EDX)). H ηλεκτροχημική φασματοσκοπίασύνθετης αντίστασης (Electrochemical Impedance Spectroscopy, EIS), η dc-πόλωση (dcpolarization)και η μέτριση ανοικτού δυναμικού (open circuit potential, OCP) χρησιμοποιήθηκανγια την αξιολόγηση των αντι-διαβρωτικών ιδιοτήτων των επιστρώσεων. Τα αποτελέσματαέδειξαν ότι οι επιστρώσεις με πληρωμένα νανοδοχεία έχουν αυξημένες αντιδιαβρωτικέςιδιότητες συγκριτικά με τις υπόλοιπες επιστρώσεις εμφανίζοντας και ιδιότητες αυτο-θεραπείας.Τέλος, συντέθηκαν νανόσφαιρες οξειδίου του χαλκού (Cu2O), οι οποίεςχαρακτηρίστηκαν με SEM, ηλεκτρονική μικροσκοπία διερχόμενης δέσμης (ΤransmissionΕlectron Μicroscopy (TEM)) και περίθλαση ακτίνων Χ (X ray Diffraction (XRD)). Οινανόσφαιρες στη συνέχεια πληρώθηκαν με ουσίες που δρουν ως βιοκτόνα και ενσωματώθηκανσε βαφές εμπορίου και σε επιστρώσεις βασισμένες σε εποξειδικές ενώσεις και μελετήθηκε ηδράση τους ως αντιαποθετικά αντιδραστήρια. Τα αποτελέσματα έδειξαν ότι οι επιστρώσεις μεπληρωμένες νανόσφαιρες Cu2O είχαν μεγαλύτερη αποτελεσματικότητα σε σύγκριση με τιςβαφές εμπορίου με βιοκτόνα μετά από έκθεση σε θαλάσσιο περιβάλλον.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1325 ◽  
Author(s):  
Jian-Bao Wang ◽  
Guang-Chun Xiao ◽  
Wei Zhao ◽  
Bing-Rong Zhang ◽  
Wei-Feng Rao

The microstructure and corrosion resistance in H2S environments for various zones of X80 pipeline steel submerged arc welded joints were studied. The main microstructures in the base metal (BM), welded metal (WM), coarse-grained heat-affected zone (CGHAZ), and fine-grained heat-affected zone (FGHAZ) were mainly polygonal ferrite and granular bainite; acicular ferrite with fine grains; granular bainite, ferrite, and martensite/austenite constituents, respectively. The corrosion behavior differences resulted from the microstructure gradients. The results of the micro-morphologies of the corrosion product films and the electrochemical corrosion characteristics in H2S environments, including open circuit potential and electrochemical impedance spectroscopy, showed that the order of corrosion resistance was FGHAZ > BM > WM > CGHAZ.


CORROSION ◽  
10.5006/0709 ◽  
2013 ◽  
Vol 69 (6) ◽  
pp. 543-550 ◽  
Author(s):  
S. Jones ◽  
K. Coley ◽  
J. Kish

When exposed to concentrated sulfuric acid, stainless steel exhibits unique electrochemical behavior. This behavior can be observed as an oscillation in open-circuit potential between the active and passive states. The transient nature of the corrosion behavior under these conditions results in a distinct challenge for measuring and predicting corrosion rates. Using a series of commercial alloys with various nickel contents, this paper outlines the utilization of electrochemical experimentation to refine the prediction of corrosion rates. The paper also discusses some of the difficulties associated with many traditional electrochemical techniques such as potentiodynamic scans when used for characterizing systems that undergo oscillations in open-circuit potential.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
M. Arthanareeswari ◽  
P. Kamaraj ◽  
M. Tamilselvi

The anticorrosive performance of zinc phosphate coatings developed by galvanic coupling technique on mild steel substrates using the cathode materials such as titanium (Ti), copper (Cu), brass (BR), nickel (Ni), and stainless steel (SS) is elucidated in this study. Thermal and chemical stability tests, immersion test in 3.5% NaCl, ARE salt droplet test, and salt spray test were carried out. The study reveals that the mild steel substrates phosphated under galvanically coupled condition showed better corrosion resistance than the one coated without coupling. The open circuit potential (OCP) of phosphated mild steel panels in 3.5% NaCl was found to be a function of phosphate coating weight and porosity of the coating.


Sign in / Sign up

Export Citation Format

Share Document