Application of EIS and SEM to Study the Corrosion Behaviors of Organic Coatings/Substrate System

2008 ◽  
Vol 373-374 ◽  
pp. 556-559 ◽  
Author(s):  
Rui Yan ◽  
Hang Wu ◽  
S.K. Yu ◽  
Shi Ning Ma ◽  
Bin Shi Xu

Electrochemical corrosion behaviors of two common-used ship coatings——epoxy aluminum coating, chloride rubber iron red coating and their composite coatings immersed in 3.5%NaCl solution were investigated using electrochemical impedance spectroscopy combined with open circuit potential measurements and SEM micrograph analysis. Potential-time result indicates that the free corrosion potential of these three coatings with immersion time are more positive than that of metal substrate, which can serve as barrier layer to protect metal substrate from corrosion. During the course of immersion, increasingly negative shift potentials with time reveal the growth of electrochemical area of anode and corrosion takes place continuously. EIS shows that corrosive species can penetrate into coatings and reach the coating/substrate interface promptly, causing the decrease of its shielding role and the beginning of electrochemical corrosion. SEM micrographs suggest that coatings were compact and continuous compared with obviously coarse and loose after corrosion, indicating the penetration of corrosive species destroys cross linkage of coatings. Composite coatings present better protection performance, displaying the effect of “1+1>2” remarkably.

2013 ◽  
Vol 690-693 ◽  
pp. 82-88
Author(s):  
Xiao Dong Niu ◽  
Wei Sun ◽  
Xin Qiu ◽  
Jian Meng ◽  
Jian An

The microstructures and electrochemical corrosion behaviors of die-cast Mg-4Al-0.4Mn-xPr (x=0, 1, 4 wt.%) alloys have been investigated. Electrochemical behaviors of all alloys are described by open circuit potential test, potentiodynamic polarization test and electrochemical impedance spectroscope in 3.5 wt.% NaCl solution. The results show that the α-Mg grain is refined and the continuous net β phase appears gradually with increasing the content of Pr in the Mg-4Al-0.4Mn alloys. Moreover, the β phase plays a role of galvanic cathode in AM40 alloy and corrosion barrier in Pr-containing alloys, respectively. Electrochemical measurements show that Pr can improve corrosion resistance of Mg-4Al-0.4Mn alloy in the 3.5 wt.% NaCl solution, and corrosion rate decreases with increasing Pr content.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
J. Porcayo-Calderon ◽  
R. A. Rodriguez-Diaz ◽  
E. Porcayo-Palafox ◽  
J. Colin ◽  
A. Molina-Ocampo ◽  
...  

The effect of Cu addition on the electrochemical corrosion behavior of Ni3Al intermetallic alloy was investigated by potentiodynamic polarization, open-circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy in 1.0 M H2SO4solution. Performance of the pure elements (Cu, Ni, and Al) was also evaluated. In general, Cu addition improved the corrosion resistance of Ni3Al. Electrochemical measurements show that corrosion resistance of Ni3Al-1Cu alloy is lower than that of other intermetallic alloys and pure elements (Ni, Cu, and Al) in 1.0 M H2SO4solution at 25°C. Surface analysis showed that the Ni3Al alloys are attacked mainly through the dendritic phases, and Cu addition suppresses the density of dendritic phases.


2011 ◽  
Vol 233-235 ◽  
pp. 2633-2639
Author(s):  
Kyaw Soe ◽  
Song Mei Li ◽  
Jian Hua Liu ◽  
Mei Yu

The microbial corrosion behaviors of 10CrNiCu steel influenced by Thiobcillus ferrooxidans (T.f) were studied by microbiological, electrochemical and surface analysis method. The open circuit potential (Eocp) and electrochemical impedance spectroscopy (EIS) of the 10CrNiCu electrodes were measured in immersion electrode way with and without T.f solution at the time of the 0, 2nd, 7th, 14thand 21stdays, respectively. Eocpof the electrode immersed in sterile medium shifted to negative potential with the immersion time while that for immersion in T.f solutions shifted negatively, then positively and finally negatively. EIS results were interpreted with different equivalent circuits of the electrode/biofilm/solution interface. The result of SEM indicated that, after 21 immersion days, there were different sizes of pits on the 10CrNiCu surface occurred in T.f solution while no evidence of the pitting corrosion was observed on the steel surface immersed in the sterile medium.


2019 ◽  
Vol 66 (6) ◽  
pp. 827-834
Author(s):  
Kong Weicheng ◽  
Shen Hui ◽  
Gao Jiaxu ◽  
Wu Jie ◽  
Lu Yuling

Purpose This study aims to investigate the electrochemical corrosion performance of high velocity oxygen fuel (HVOF) sprayed WC–12Co coating in 3.5 Wt.% NaCl solution, which provided a guiding significance on the corrosion resistance of H13 hot work mould steel. Design/methodology/approach A WC–12Co coating was fabricated on H13 hot work mould steel using a HVOF, and the electrochemical corrosion behaviors of WC–12Co coating and substrate in 3.5 Wt.% NaCl solution was measured using open circuit potential (OCP), potentiodynamic polarization curve (PPC) and electrochemical impedance spectroscopy (EIS) tests. Findings The OCP and PPC of WC–12Co coating positively shift than those of substrate, its corrosion tendency and corrosion rate decrease to enhance its corrosion resistance. The curvature radius of capacitance curve on the WC–12Co coating is larger than that on the substrate, and the impedance and polarization resistance of WC–12Co coating increase faster than those of substrate, which reduces the corrosion process. Originality/value The electrochemical corrosion behaviors of WC–12Co coating and substrate in 3.5 Wt.% NaCl solution is first measured using OCP, PPC and EIS tests, which improve the electrochemical corrosion resistance of H13 hot work mould steel.


2012 ◽  
Vol 152-154 ◽  
pp. 64-67 ◽  
Author(s):  
Dong Ping Wei ◽  
Shao Mei Ma ◽  
Ze Guang Zhou ◽  
Zeng Wei Huang ◽  
Ai Qun Yuan ◽  
...  

The electrochemical corrosion inhibitions of potassium zinc phosphate were studied by polarization, open circuit potential measurements, electrochemical impedance of the pigment extract and coating immersion test. Dynamic analysis shows that in pH=7 3.5% NaCl extract, KZn2(PO4)(HPO4) functions as a cathodic inhibitor on steel and its efficiency is even superior to other phosphates. The inhibiting efficiency of the pigments on steel decrease in the order: KZn2(PO4)(HPO4) > aluminum zinc phosphate > zinc phosphate ≧ aluminum triphosphate The coating tests show that potassium zinc phosphate can efficiently enhance the inhibition properties of coating and prevent the erosion of the corrosive medium by improving the barrier and hydrophobicity of the coating. The anticorrosive property of the pigments decrease in the order: KZn2(PO4)(HPO4)> aluminum zinc phosphate > zinc phosphate ≈APW-1.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 230 ◽  
Author(s):  
Yulong Hu ◽  
Zhiqiao Wang ◽  
Jianyang Ai ◽  
Shichao Bu ◽  
Hongwei Liu

In this paper, two kinds of micro-arc oxidation (MAO) coatings on TA2 with different thickness were prepared by controlled oxidation time and then were characterized for their composition, crystalline structure, and surface morphology. The effect of MAO treatment on electrochemical corrosion behaviors of TA2 in 3.5% NaCl solution were studied by the electrochemical measurements including open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves. The results indicate that the electrochemical behavior of MAO coating is related to the coating structure. OCP can be used to evaluate the porosity of MAO coating. More positive OCP indicates coating with lower porosity and larger resistance obtained from EIS. The MAO treatment can significantly enhance the corrosion resistance of TA2, but the thickness increase of MAO coating could not further improve the corrosion resistance. In addition, because of the increase in effective surface area, the MAO treatment may enhance the cathode action of TA2 when the galvanic cell is composed of TA2 and other more negative metal, which in turn promotes the corrosion of negative metal.


2013 ◽  
Vol 699 ◽  
pp. 645-649
Author(s):  
Chang Bin Shen

Similar welds composed of 5083 were produced by friction stir welding. In the solution of 0.2 M NaHSO3 and 0.6 M NaCl, with the addition of a given concentration sodium molybdate as the inhibitor, the electrochemical corrosion behaviors of the friction stir welds (FSW) and 5083 were comparatively investigated by potentiodynamic polarization curve tests and electrochemical impedance spectra (EIS) at the ambient temperature for different test periods. The results indicated that : with the extension of period, the inhibition efficiencies (IE) for both the weld and 5083 base materials enhanced, at the same period, the inhibition efficiency (IE) for the weld was beyond that for 5083 base materials, sodium molybdate may be thought of as an effective inhibitor for 5083 aluminum alloy, the interaction between inhibitor and weld is stronger than that between inhibitor and base materials.


2008 ◽  
Vol 38 ◽  
pp. 238-247
Author(s):  
A.D. Davydov ◽  
V.S. Shaldaev

The initiation and development of pitting corrosion of steel 20Cr13 in the NaCl solutions with various concentrations, temperatures, and pH values are studied under the potentiostatic conditions and at the free-corrosion potential. The pitting and repassivation potentials are determined using the method of cycling voltammetry. In spite of the fact that thus determined pitting potential is more positive than the corrosion potential (the open-circuit potential Eo.c.), the long-term experiments, which were performed at the free-corrosion potential, showed that pitting corrosion takes place without imposing a potential using an external power source. It is concluded that the probability of pitting corrosion of steel should be determined by comparing the corrosion potential (the open-circuit potential) with the repassivation potential Erp. Steel 20Cr13 is prone to the pitting corrosion, because Erp is more negative than Eo.c.. In the potentiostatic experiments, the variation of the depth and diameter of pits and their number with the time and the effect of temperature and electrode rotation on the pit propagation are studied. The results, which were obtained at the free-corrosion potential, are much less reproducible. In this case, in contrast to the potentiostatic conditions, the pit depth increased only slightly and the pit width increased to a larger extent. The effect of concentration, pH value, and temperature of NaCl solutions on the pit propagation is considered. It is concluded that the data on the development of pitting corrosion under the potentiostatic conditions can be hardly extended to the conditions of free corrosion potential.


2007 ◽  
Vol 546-549 ◽  
pp. 571-574
Author(s):  
Xing Wu Guo ◽  
Jian Wei Chang ◽  
Shang Ming He ◽  
Peng Huai Fu ◽  
Wen Jiang Ding

The corrosion behavior of GW63 (Mg-6wt.%Gd-3wt.%Y-0.4wt.%Zr) alloys in 5% NaCl aqueous solution has been investigated by PARSTAT 2273 instrument. The Open Circuit Potential (ECORR) vs. time curve, cyclic polarization (Pitting Scans) curve and Electrochemical Impedance Spectroscopy (EIS) was measured for the GW63 alloys in as-cast and T6 heat treatment conditions. The EIS results indicated that the tendency of impedance variation for as-cast condition was monotonic decreasing, however, the tendency of variation for T6 condition was not completely monotonic but the total tendency was decreasing. The values of impedance of GW63 alloy at 0.1 Hz are about 103 ohm-cm2 for as-cast and T6 condition.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 454 ◽  
Author(s):  
Arman Dastpak ◽  
Kirsi Yliniemi ◽  
Mariana de Oliveira Monteiro ◽  
Sarah Höhn ◽  
Sannakaisa Virtanen ◽  
...  

In this study, a waste of biorefinery—lignin—is investigated as an anticorrosion coating on stainless steel. Corrosion behavior of two lignin types (hardwood beech and softwood spruce) was studied by electrochemical measurements (linear sweep voltammetry, open circuit potential, potentiostatic polarization, cyclic potentiodynamic polarization, and electrochemical impedance measurements) during exposure to simulated body fluid (SBF) or phosphate buffer (PBS). Results from linear sweep voltammetry of lignin-coated samples, in particular, demonstrated a reduction in corrosion current density between 1 and 3 orders of magnitude cf. blank stainless steel. Furthermore, results from cross cut adhesion tests on lignin-coated samples demonstrated that the best possible adhesion (grade 0) of ISO 2409 standard was achieved for the investigated novel coatings. Such findings suggest that lignin materials could transform the field of organic coatings towards more sustainable alternatives by replacing non-renewable polymer coatings.


Sign in / Sign up

Export Citation Format

Share Document