Seismic Behavior of Super High-Rise Frame-Core Wall Structure

2012 ◽  
Vol 226-228 ◽  
pp. 967-971
Author(s):  
Ji Xing Yuan ◽  
Qing Zhang

In this paper a super high-rise frame-core wall as an example, It was analyzed the frame-core wall structure system under action of earthquake force features, set reasonable seismic performance objectives, analysis the structure reasonable failure mode, made it have enough bearing capacity and ductility for a reasonable design of frame and coupling wall-beam, could make the frame-core wall structure with multiple seismic fortification lines, improve the seismic performance of the frame-core wall structure. Finally, the action of earthquake deformation and seismic shear force distribution was analyzed through the elastic dynamic time-history analysis. After a reasonable optimization analysis showed: Frame-core wall structure could have three seismic fortification lines: coupling beams, core wall, frame structure, and had enough energy dissipation ability at the same time, could form the rational failure mode, improved the seismic performance of the structure.

2012 ◽  
Vol 174-177 ◽  
pp. 2012-2015
Author(s):  
Xiao Long Zhou ◽  
Ying Min Li ◽  
Lin Bo Song ◽  
Qian Tan

There are two typical seismic damage characteristics to the masonry building with frame shear wall structure at first two stories, and the lateral stiffness ratio of the third storey to the second storey is one of the key factors mostly affecting the seismic performance of this kind of building. However, some factors are not considered sufficiently in current Chinese seismic codes. According to the theory of performance-based seismic design, the seismic performance of this kind of structure is analyzed in this paper by taking time-history analysis on models which with different storey stiffness ratios. The results show that when the lateral stiffness ratio controlled in a reasonable range, the upper masonry deformation can be ensured in a range of elastic roughly, and the bottom frame can be guaranteed to have sufficient deformation and energy dissipation capacity. Finally, according to the seismic performance characteristics of masonry building with frame shear wall structure at first two stories, especially the characteristics under strong earthquakes, a method of simplified calculation model for the upper masonry is discussed in this paper.


2013 ◽  
Vol 368-370 ◽  
pp. 1043-1047
Author(s):  
Yin Zhang ◽  
You Han ◽  
Shuai Liang

Ecological composite wall as ecological composite wall structure of the main stress components, the seismic performance is ecological composite wall structure seismic performance evaluation system of the main content. Based on the grey system theory, the grey correlation analysis to the key parameters (the mouth of the cave, frame structure, height to width ratio) change ecological composite wall test results are analyzed, the key parameters on the ecological composite wall the influence law of seismic performance, for choosing wall structure design method to provide basis.


2012 ◽  
Vol 166-169 ◽  
pp. 2209-2215
Author(s):  
Zhi Xin Wang ◽  
Hai Tao Fan ◽  
Huang Juan Zhao

Finite element models of frames with steel-bracings and with concrete filled steel tube struts are built in ETABS. Seismic performance of these models is analyzed with base-shear method, superposition of modal responses method and time history method respectively. The results show that the steel-bracings or concrete filled steel tube struts are efficient to increase the story-stiffness, and the top displacement of the frame structure decreases significantly.


2011 ◽  
Vol 243-249 ◽  
pp. 1401-1404
Author(s):  
Yan Xia Ye ◽  
Jing Zhao

In order to study the influence of dynamic response of frame-support-wall structure with openings on floor, six 3D models with different radio of opening are made. According to the finite element mode analysis and dynamic time-history analysis, we know that the location of openings, the size of openings etc. are important to the performance of structure. In order to keep entire structure in good condition, we suggest that the rate of openings should be smaller than 6%~8%.


2018 ◽  
Vol 34 (4) ◽  
pp. 1847-1867 ◽  
Author(s):  
Renée MacKay-Lyons ◽  
Constantin Christopoulos ◽  
Michael Montgomery

Viscoelastic coupling dampers (VCDs) are installed in lieu of traditional reinforced concrete (RC) coupling beams in high-rise buildings to provide distributed supplemental damping for all dynamic loading conditions without affecting the architectural layout. When distributed effectively over the height of the building, VCDs provide viscous damping in all lateral modes of vibration and an elastic restoring force that enhances the lateral stiffness of the coupled system. In this paper, a first extensive numerical case study is carried out to compare the seismic performance of a conventional coupled shear wall high-rise building to a high damping alternate of the same design in which VCDs replace all diagonal RC beams in the core to enhance its seismic resilience. The added damping from VCDs is intended to reduce the peak responses under low amplitude earthquakes, but for larger amplitude maximum credible earthquakes, the peak responses are similar; however, structural damage is greatly reduced. Three seismic hazard levels were investigated, and the results indicate that the use of VCDs reduces peak floor accelerations, story drifts, and story shears over all seismic intensities. Nonlinear time-history analysis results also highlighted the improved resilience of the VCD structure at the maximum credible seismic hazard level where the use of VCDs eliminated all damage to coupling beams that would otherwise require repair over most of the height of the building.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Shujin Li ◽  
Cai Wu ◽  
Fan Kong

A building developed by Wuhan Shimao Group in Wuhan, China, is a high-rise residence with 56 stories near the Yangtze River. The building is a reinforced concrete structure, featuring with a nonregular T-type plane and a height 179.6 m, which is out of the restrictions specified by the China Technical Specification for Concrete Structures of Tall Building (JGJ3-2010). To investigate its seismic performance, a shaking table test with a 1/30 scale model is carried out in Structural Laboratory in Wuhan University of Technology. The dynamic characteristics and the responses of the model subject to different seismic intensities are investigated via the analyzing of shaking table test data and the observed cracking pattern of the scaled model. Finite element analysis of the shaking table model is also established, and the results are coincident well with the test. An autoregressive method is also presented to identify the damage of the structure after suffering from different waves, and the results coincide well with the test and numerical simulation. The shaking table model test, numerical analysis, and damage identification prove that this building is well designed and can be safely put into use. Suggestions and measures to improve the seismic performance of structures are also presented.


2013 ◽  
Vol 405-408 ◽  
pp. 1056-1062
Author(s):  
Qing Li Meng ◽  
Jun Chen ◽  
Chun Yu Chu

In this paper, a four-storey reinforced concrete frame infilled wall structure does not meet the seismic perform target, based on the seismic behavior target of both frame and infilled wall, to carry out the study on the passive control seismic strengthen of RC infilled wall structure with attached dampers. First, two kinds of passive control strengthen schemes were put forward. Scheme 1: Dampers were installed in the in-plane direction parallel with all 1-storey infilled walls; Scheme 2: Dampers were installed in the in-plane direction parallel with all 1-storey and 2-storey infilled walls. Then to establish the two types of passive control seismic strengthen model in OpenSees, carry out the rare earthquake nonlinear time-history analysis under El Centro, Parkfield and San Fenando ground motions. Finally, in accordance with the seismic performance target quantization index of RC Frame infilled wall structure used as hospital, i.e. considering storey drift ratio limit and infilled wall damage, judge the scheme 2 can meets the seismic performance target.


2013 ◽  
Vol 477-478 ◽  
pp. 784-787
Author(s):  
Yi Zhen Yang ◽  
Hong Gan

Frame shear wall structure as a high-rise building one of the most widely used structure form, has good seismic performance and high bearing capacity, the frame shear wall structure research focused on the study of shear wall quantity more, pay attention to consider shear wall quantity and the intrinsic relationships between shear wall lateral stiffness and to seek the optimal design of shear wall stiffness, ignores the position of the shear wall, on the whole architecture of the influence of lateral stiffness, and can go, is set the location of the shear wall is difficult to study, this article will focus on the research of location of shear wall structure seismic performance, provide reference for the future of this kind of structure design.


2011 ◽  
Vol 105-107 ◽  
pp. 818-822
Author(s):  
Xiao Fei Teng ◽  
Si Yang Chen ◽  
Bin Luo

To make a top local adding stories of “L” flat facade irregular frame structure with good resistance to twist and integrity, can better satisfy the requirements of local seismic fortification intensity,using metal damper to this after-adding-stories framework model for processing. Using SAP2000 finite element analysis software modeling and in its install metal damper dynamic time-history analysis before and after. Results show that the structure using metal consumption technology in consume earthquake input energy at the same time can enhance structure rigid and floor wrest resistant and strengthen the lateral stiffness integral structure seismic performance.


Sign in / Sign up

Export Citation Format

Share Document