Investigation on Nonlinear Dynamics Behavior of Stay Cables under Rain-Wind Induced Vibration in the Consideration of the Restoring Force and the Coulomb Force Comprehensively

2012 ◽  
Vol 178-181 ◽  
pp. 1994-2001
Author(s):  
Yong Gang Xiao ◽  
Yan Tang ◽  
Yan Huang

Abstract. This paper consider the restoring force and the coulomb force between the cable and the rivulet comprehensively ,Use Alembert principle to establish two-degree coupled nonlinear motion differential equations of rain-wind-induced vibrations of the cable structure . The equation was analyzed by numerical calculation method with mathematic program . The phase diagrams of cable and water-line were achieved, Also analyzed the effect of the density ratio、viscosity and other parameters on the cable amplitude . Finally through the calculation of Lyapunov performance index obtained the system exist chaotic region. The Phase trajectory and the time-history curve with time extension will be increasingly larger , which can,t be predicted ,thus the chaos phenomenon of system being better interpreted .

2012 ◽  
Vol 594-597 ◽  
pp. 886-890 ◽  
Author(s):  
Gan Hong ◽  
Mei Li ◽  
Yi Zhen Yang

Abstract. In the paper, take full account of energy dissipation operating characteristics. Interlayer shear-frame structure for the analysis of the Wilson-Θmethod ELASTOPLASTIC schedule, the design of a nonlinear dynamic time history analysis procedure. On this basis, taking into account the restoring force characteristics of the energy dissipation system, the inflection point in the restoring force model treatment, to avoid a result of the calculation results of distortion due to the iterative error. A frame structure seismic response time history analysis results show that: the framework of the energy dissipation significantly lower than the seismic response of the common framework, and its role in the earthquake when more significant.


2018 ◽  
Vol 34 (4) ◽  
pp. 1847-1867 ◽  
Author(s):  
Renée MacKay-Lyons ◽  
Constantin Christopoulos ◽  
Michael Montgomery

Viscoelastic coupling dampers (VCDs) are installed in lieu of traditional reinforced concrete (RC) coupling beams in high-rise buildings to provide distributed supplemental damping for all dynamic loading conditions without affecting the architectural layout. When distributed effectively over the height of the building, VCDs provide viscous damping in all lateral modes of vibration and an elastic restoring force that enhances the lateral stiffness of the coupled system. In this paper, a first extensive numerical case study is carried out to compare the seismic performance of a conventional coupled shear wall high-rise building to a high damping alternate of the same design in which VCDs replace all diagonal RC beams in the core to enhance its seismic resilience. The added damping from VCDs is intended to reduce the peak responses under low amplitude earthquakes, but for larger amplitude maximum credible earthquakes, the peak responses are similar; however, structural damage is greatly reduced. Three seismic hazard levels were investigated, and the results indicate that the use of VCDs reduces peak floor accelerations, story drifts, and story shears over all seismic intensities. Nonlinear time-history analysis results also highlighted the improved resilience of the VCD structure at the maximum credible seismic hazard level where the use of VCDs eliminated all damage to coupling beams that would otherwise require repair over most of the height of the building.


Author(s):  
Ryuya Shimazu ◽  
Ichiro Tamura ◽  
Shinichi Matsuura ◽  
Michiya Sakai ◽  
Yohei Ono

Abstract Loads applied to structures by means of vibration can be classified into load-controlled and displacement-controlled loads. The realistic elastic-plastic behavior of structures subjected to seismic loads is not fully understood, and the classification of the load applied to structures by means of earthquakes is unclear. The failure mode differs depending on the load classification, and thus clarifying the classification of the load applied to the structure is useful for designing the structure. This study clarified the realistic load classification of structures under an elastic-plastic response. Vibration tests were conducted using sinusoidal waves as inputs, and the elastic-plastic behavior of the piping supports undergoing buckling or fatigue failure was obtained. The maximum restoring force and the maximum deformation relationship were obtained from the envelope of the time history data of the test results. In addition, it was shown that the classification of the load could be determined from the maximum force-deformation diagram, even in cases involving buckling and fatigue. In the maximum force-deformation diagram, when the change in the ratio of dynamic restoring force to static restoring force is small, a load-controlled load is applied to the structure because the restoring force of the structure follows the change in the input wave. By contrast, when the change in the ratio of dynamic response displacement to static displacement is small, a displacement-controlled load is applied to the structure because the response displacement of the structure follows the change in the input wave.


2020 ◽  
Vol 8 (8) ◽  
pp. 603
Author(s):  
Hua Huang ◽  
Yaoqiang Xian ◽  
Wei Zhang ◽  
Mengxue Guo ◽  
Kun Yang ◽  
...  

Lightweight cable–membrane structures can span large distances and undertake aesthetically pleasing shapes. They are widely used for roofs and modern structural canopies and in the aerospace industry for large on-board antenna reflectors that are to be deployed in space. This paper studies a wind-induced vibration under different cable stress relaxation conditions based on the wind load time-history to obtain the dynamic behavior of such a structure. Particularly, the focus is put upon its wind resistance in the event of stress relaxation. This research can provide an important reference for the design of wind resistance, damage assessment, and emergency maintenance for the spoke-wise cable–membrane structure (SCMS).


2014 ◽  
Vol 1065-1069 ◽  
pp. 1418-1422
Author(s):  
Tie Jun Qu ◽  
Rong Huan Xu

A full scale masonry model of two-floor and single bay was built in this paper and was strengthened by ring-beam and constructional column. And then pseudo-dynamic testing was conducted to study the time-history curves of displacement, velocity, acceleration response and restoring force in 7 degree rarely earthquake. Results show that the earthquake performance is steady and there are no visible cracks on the model after the testing. Windows and doors perform well because of the constraint of ring-beam and column, whereas failures often occurred when the structures were not strengthened. Seismic performance is largely improved by ring-beam and constructional column and the structure can resist 7 degree rarely earthquake.


2014 ◽  
Vol 501-504 ◽  
pp. 1174-1177
Author(s):  
Xiao Ming Du ◽  
Nan Li

The stayed cable is the key part of the cable-stayed bridge and the main bearing section. Stay cables are prone to vibration under the loads of the rains winds, earthquakes and transportation for the long-span bridge is very flexible and the damping is small. A long time effect of cable vibration on the structure durability has become a serious problem of cable-stayed bridge in the development and operation. Wind induced vibration of stay cable shape is analyzed, and some common damping measures are expounded in the article and it provides the basis for further study in the future.


2014 ◽  
Vol 597 ◽  
pp. 376-379 ◽  
Author(s):  
Feng Lin Gan ◽  
Hai Long Jiang

For wind-induced vibration of transmission tower-line system, the vibration reduction effects are studied based on a new type steel-lead viscoelastic damper. Firstly, Calculate damped coefficient basing on the test of the new type steel-lead viscoelastic damper under slow reversed cyclic horizontal loads. Then, a finite element model of transmission tower was built by using ANSYS. And the time history samples of random fluctuating wind load is obtained with the linear auto-regressive filter law principle. Next, three installation plans of dampers on tower were proposed based on analyzing the working principle damper and the structure of tower. Finally, a wind-induced vibration transient response simulation was performed respectively for the different plans. The influences of SLVD dampers on the displacement and on the acceleration of the controlled nodes were compared. SLVD damper can reduce the top node displacement by about 37.89%. The results indicated that the SLVD damper can suppress the wind-induced vibration. And through comparison, the optimal installation scheme of SLVD dampers is obtained.


2013 ◽  
Vol 353-356 ◽  
pp. 1826-1831
Author(s):  
Tie Jun Qu ◽  
Yan Ping Wang ◽  
Xian Yun Wang

A two-story masonry housing model was made in this paper. According to Intensity 7, adjusted Northridge record was selected to be the ground motion input in the pseudo-dynamic test. Pseudo-dynamic test and pseudo-static test were carried out to investigate the seismic behavior of the model structure. The time-history curves of the acceleration, velocity, displacement and restoring force of the structural response were obtained besides the time-history curves of the measuring points of the structure. Also the steel strain of the tie-columns and the hysteresis loops of the structure were obtained. The result shows multi-story confined masonry structures possess superior seismic performance if coordinated with the provision specified in the current compulsory design code and it can continue to use after appropriate dressing under the rarely earthquake.


2011 ◽  
Vol 27 (3) ◽  
pp. 719-744 ◽  
Author(s):  
Matthew R. Eatherton ◽  
Jerome F. Hajjar

There has been widespread interest in the development and use of self-centering (SC) lateral resisting systems that eliminate residual drifts after large earthquakes. SC systems often include a restoring force component and a component that dissipates seismic energy. Typically, it is assumed that the criterion for self-centering is satisfied if the restoring force is proportioned to be greater than the force required to yield the energy dissipating component. A parametric SDOF study was conducted using time-history analyses on several prototype buildings to quantify the effect of varying system parameters on structural response including residual drifts. The ambient resistance of the rest of the building was considered, as well as proportioning the system with less restoring force than the yield capacity of the dissipative component. In addition, the probabilistic mechanism that creates a propensity for reducing residual drifts in systems with little or no restoring force is explored and quantified. It was found that a restoring force that is at least one-half of the force required to yield the dissipative component will still reliably eliminate residual drifts in a non-softening system.


Sign in / Sign up

Export Citation Format

Share Document