scholarly journals Analysis of Wind-Induced Vibration of a Spoke-Wise Cable–Membrane Structure

2020 ◽  
Vol 8 (8) ◽  
pp. 603
Author(s):  
Hua Huang ◽  
Yaoqiang Xian ◽  
Wei Zhang ◽  
Mengxue Guo ◽  
Kun Yang ◽  
...  

Lightweight cable–membrane structures can span large distances and undertake aesthetically pleasing shapes. They are widely used for roofs and modern structural canopies and in the aerospace industry for large on-board antenna reflectors that are to be deployed in space. This paper studies a wind-induced vibration under different cable stress relaxation conditions based on the wind load time-history to obtain the dynamic behavior of such a structure. Particularly, the focus is put upon its wind resistance in the event of stress relaxation. This research can provide an important reference for the design of wind resistance, damage assessment, and emergency maintenance for the spoke-wise cable–membrane structure (SCMS).

2019 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Fankai Kong ◽  
Hengxu Liu ◽  
Binghan Wang ◽  
Huaqiu Ding ◽  
Zhen Jiang ◽  
...  

Flexible inflatable membrane structure has the characteristics of light weight, large span, and small stiffness, and it is very sensitive to wind load. Aiming at the dynamic response of marine evacuation inflatable slides under complex and changeable wind loads at sea, the response law of the inflatable slide under different wind directions, wind speeds, and internal pressure conditions is studied by using fluid–solid coupling theory. The most dangerous conditions of evacuation system installation and the ideal internal pressure of the inflatable slide meeting the stability requirements are deduced. The LS-DYNA module is used to simulate the inflation process of the slide. The evacuation sliding is rationally simplified. By changing the inflatable internal pressure of the slide, the variation law of displacement, deformation, and sliding speed of the slide is obtained, and the optimal inflation internal pressure satisfying the evacuation efficiency requirement is obtained. The results show that the inflow wind direction angle of 30° is the most dangerous condition for slideway installation, and the internal pressure of 4000 Pa is the ideal internal pressure to meet the double standards of stability and evacuation efficiency. The numerical results obtained are valuable for analyzing wind resistance of offshore inflatable membrane structures and their practical design and application in evacuation systems.


2020 ◽  
Vol 980 ◽  
pp. 275-281
Author(s):  
Hu Jun

In order to consider the fluctuating wind load induced fatigue problem of long span suspension bridge, fatigue reliability formula is modified by assuming the fatigue life is accord with the weibull distribution. Based on the accurate bridge buffeting analysis of time history, the stress time history of components of a suspension bridge in east sea China is simulated, and then the fatigue damages and reliabilities are calculated. The results indicate that the main cables and hangers have enough fatigue reliability under the fluctuating wind load, the fatigue failure will not occur; the stiffening girder has larger fatigue damage, under 40 / (m.s-1) mean wind speed action, the girder of mid-support section’s average fatigue life is only 3.103 years, so the girder’s damage under strong wind action should be taken seriously.


2019 ◽  
Vol 258 ◽  
pp. 02025
Author(s):  
Kazuo Yokobori ◽  
Tomo Miura

A membrane structure is a space structure composed of a membrane material (fabric or film), cables, and steel frames, among others. It reduces the environmental load for transporting materials and constructions; for instance, compared with conventional roofs that have steel panels or tiles, the membrane structure of a roof is lightweight. Computer analysis and three-dimensional (3D) models are required for determining the stable shape of such tensile structures. It is useful to use computer-integrated systems for the design and manufacturing process because these 3D models consist of numerical data. In this study, we developed a system program based on artificial intelligence methods, with a support vector machine instead of human judgment for the membrane structure estimation and for a probabilistic optimization to predict the differences caused by production loss etc. and compare the results after actual production. And we got close predicted results to the person.


2016 ◽  
Vol 10 (12) ◽  
pp. 245
Author(s):  
Solmaz Yaghobzadeh

Explained ways to strengthen structures against lateral dynamic loads can be divided into two broad categories. The first part is the structural systems for controlling seismic displacement and second part is the use of applying systems of control forces. Response mechanism of structures using control systems are improved and greatly reduce the risks of damage caused by earthquakes.Today the use of these control systems in buildings have been increased and it’s important to reduce vibration of structures is felt more than ever. As well as to improve the dynamic behavior of nearby buildings, control systems can be installed between adjacent buildings as activated, semi-active and inactivated systems. The main purpose of this study is the use of control systems in two similar adjacent buildings to reduce the entire system response which will be the analytical study of the impact of viscous dampers to control system performance.In order to analysis of modeling to improve the dynamic behavior of different adjacent buildings connected with dampers, two models of the original sample will be examined in this article. All examples are different from each other and to elicit response analysis and time history software SAP 2000was used. According to the results the effect of fluid viscous dampers for tall buildings compared shorter building, is less. Also, these dampers for adjacent buildings with different heights than buildings with same height are more effective.


1986 ◽  
Vol 13 (3) ◽  
pp. 375-381
Author(s):  
Ronald A. Macnaughton

This paper contains a wind load and resistance analysis for a type of structure that has frequently failed: partially built houses. The critical component of such structures is identified to be the first-storey shearwalls running across the house. The calculated racking strength of that storey is compared to the wind loading the structure would be expected to resist if it were engineered. Various methods are proposed for builders to provide these structures with more wind resistance during the early stages of construction. Differences between Canadian codes and codes in other jurisdictions with respect to this are pointed out. Key words: wind loads, houses, failure, wind bracing, temporary bracing, shearwalls, fibreboard, sheathing, permanent bracing, racking strength, construction procedures, nailing, building code.


2014 ◽  
Vol 889-890 ◽  
pp. 221-224
Author(s):  
Gao Hua Liao ◽  
Jian Zhong Wu ◽  
Yong Jun Yu

According to the principle of equivalent, the approach to draw up the fatigue test loading spectrum of wind turbine blade is presented. Analysis of wind load characteristics, based on ARMA (Autoregressive Moving Average Model) for the simulation of wind speed, wind load simulation example is given. Using Bladed software, the wind speed-time history is converted to a moment-time history that is the equivalent of blade root.Using data compression technology and the rain flow counting algorithm, load represented by a 2D matrix examples is given.The one-dimensional symmetry loading spectrum draw up, the complexity can be simplified, and provides the necessary foundation for fatigue life analysis.


2014 ◽  
Vol 597 ◽  
pp. 376-379 ◽  
Author(s):  
Feng Lin Gan ◽  
Hai Long Jiang

For wind-induced vibration of transmission tower-line system, the vibration reduction effects are studied based on a new type steel-lead viscoelastic damper. Firstly, Calculate damped coefficient basing on the test of the new type steel-lead viscoelastic damper under slow reversed cyclic horizontal loads. Then, a finite element model of transmission tower was built by using ANSYS. And the time history samples of random fluctuating wind load is obtained with the linear auto-regressive filter law principle. Next, three installation plans of dampers on tower were proposed based on analyzing the working principle damper and the structure of tower. Finally, a wind-induced vibration transient response simulation was performed respectively for the different plans. The influences of SLVD dampers on the displacement and on the acceleration of the controlled nodes were compared. SLVD damper can reduce the top node displacement by about 37.89%. The results indicated that the SLVD damper can suppress the wind-induced vibration. And through comparison, the optimal installation scheme of SLVD dampers is obtained.


Sign in / Sign up

Export Citation Format

Share Document