Parallel SMO for Traffic Flow Forecasting

2010 ◽  
Vol 20-23 ◽  
pp. 843-848 ◽  
Author(s):  
Fan Wang ◽  
Guo Zhen Tan ◽  
Chao Deng

Accurate traffic flow forecasting is crucial to the development of intelligent transportation systems and advanced traveler information systems. Since Support Vector Machine (SVM)have better generalization performance and can guarantee global minima for given training data, it is believed that SVR is an effective method in traffic flow forecasting. But with the sharp increment of traffic data, traditional serial SVM can not meet the real-time requirements of traffic flow forecasting. Parallel processing has been proved to be a good method to reduce training time. In this paper, we adopt a parallel sequential minimal optimization (Parallel SMO) method to train SVM in multiple processors. Our experimental and analytical results demonstrate this model can reduce training time, enhance speed-up ratio and efficiency and better satisfy the real-time demands of traffic flow forecasting.

Author(s):  
Saeed Khazaee ◽  
Ali Tourani ◽  
Sajjad Soroori ◽  
Asadollah Shahbahrami ◽  
Ching Yee Suen

In vision-driven Intelligent Transportation Systems (ITS) where cameras play a vital role, accurate detection and re-identification of vehicles are fundamental demands. Hence, recent approaches have employed a wide range of algorithms to provide the best possible accuracy. These methods commonly generate a vehicle detection model based on its visual appearance features such as license plate, headlights, or some other distinguishable specifications. Among different object detection approaches, Deep Neural Networks (DNNs) have the advantage of magnificent detection accuracy in case a huge amount of training data is provided. In this paper, a robust approach for license plate detection (LPD) based on YOLO v.3 is proposed which takes advantage of high detection accuracy and real-time performance. The mentioned approach can detect the license plate location of vehicles as a general representation of vehicle presence in images. To train the model, a dataset of vehicle images with Iranian license plates has been generated by the authors and augmented to provide a wider range of data for test and train purposes. It should be mentioned that the proposed method can detect the license plate area as an indicator of vehicle presence with no Optical Character Recognition (OCR) algorithm to distinguish characters inside the license plate. Experimental results have shown the high performance of the system with a precision 0.979 and recall 0.972.


2020 ◽  
Vol 12 (20) ◽  
pp. 8298
Author(s):  
Zhanzhong Wang ◽  
Ruijuan Chu ◽  
Minghang Zhang ◽  
Xiaochao Wang ◽  
Siliang Luan

For intelligent transportation systems (ITSs), reliable and accurate real-time traffic flow prediction is an important step and a necessary prerequisite for alleviating traffic congestion and improving highway operation efficiency. In this paper, we propose an improved hybrid predicting model including two steps: decomposition and prediction to predict highway traffic flow. First, we adopted the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method to adaptively decompose the original nonlinear, nonstationary, and complex highway traffic flow data. Then, we used the improved weighted permutation entropy (IWPE) to obtain new reconstructed components. In the prediction step, we used the gray wolf optimizer (GWO) algorithm to optimize the least-squares support vector machine (LSSVM) prediction model established for each reconstruction component and integrate the prediction results of each subsequence to obtain the final prediction result. We experimentally validated the effectiveness of the proposed approach. The research results reveal that the proposed model is useful for predicting traffic flow and its changing trends and also allowing transportation officials to make more effective traffic decisions.


Author(s):  
Brian L. Smith ◽  
Michael J. Demetsky

Freeway traffic flow forecasting will play an important role in intelligent transportation systems. The TRB Committee on Freeway Operations has included freeway flow forecasting in its 1995 research program. Much of the past research in traffic flow forecasting has addressed short-term, single-interval predictions. Such limited forecasting models will not support the development of the longer-term operational strategies needed for such events as hazardous material incidents. A multiple-interval freeway traffic flow forecasting model has been developed that predicts traffic volumes in 15-min intervals for several hours into the future. The nonparametric regression modeling technique was chosen for the multiple-interval freeway traffic flow forecasting problem. The technique possesses a number of attractive qualities for traffic forecasting. It is intuitive and uses a data base of past conditions to generate forecasts. It can also be implemented as a generic algorithm and is easily calibrated at field locations, suiting it for wide-scale deployment. The model was applied at two sites on the Capital Beltway monitored by the Northern Virginia Traffic Management System. The nonparametric regression forecasting model produced accurate short- and long-term volume estimates at both sites.


Webology ◽  
2021 ◽  
Vol 18 (04) ◽  
pp. 1512-1526
Author(s):  
Cynthia J ◽  
G. Sakthi Priya ◽  
C. Kevin Samuel ◽  
Suguna M ◽  
Senthil J ◽  
...  

Congestion due to traffic, results in wasted fuel, increase in pollution level, increase in travel time and vehicular queuing. Smart city initiatives are aimed to improve the quality of urban life. Intelligent Transportation System (ITS) provides solution for many smart city projects, as they capture real time data without any fixed infrastructure. The real-time prediction of traffic flow aids in alleviating congestion. Accurate and timely prediction on the future traffic flow helps individual travellers, public transport, and transport planning. Existing systems are designed to predict specific traffic parameters like weekday, weekend, and holidays. This research presents a machine learning based traffic flow forecasting for the city of Bloomington, US not with any precise parameter. The day-wise dataset for the 5 areas is taken from Jan 1, 2017 to Dec 31, 2019. The algorithm used for implementation is Support Vector Regression (SVR) and Long Short-Term Memory (LSTM). LSTM algorithm provides better traffic prediction with least root means square error value.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-25
Author(s):  
Bin Lu ◽  
Xiaoying Gan ◽  
Haiming Jin ◽  
Luoyi Fu ◽  
Xinbing Wang ◽  
...  

Urban traffic flow forecasting is a critical issue in intelligent transportation systems. Due to the complexity and uncertainty of urban road conditions, how to capture the dynamic spatiotemporal correlation and make accurate predictions is very challenging. In most of existing works, urban road network is often modeled as a fixed graph based on local proximity. However, such modeling is not sufficient to describe the dynamics of the road network and capture the global contextual information. In this paper, we consider constructing the road network as a dynamic weighted graph through attention mechanism. Furthermore, we propose to seek both spatial neighbors and semantic neighbors to make more connections between road nodes. We propose a novel Spatiotemporal Adaptive Gated Graph Convolution Network ( STAG-GCN ) to predict traffic conditions for several time steps ahead. STAG-GCN mainly consists of two major components: (1) multivariate self-attention Temporal Convolution Network ( TCN ) is utilized to capture local and long-range temporal dependencies across recent, daily-periodic and weekly-periodic observations; (2) mix-hop AG-GCN extracts selective spatial and semantic dependencies within multi-layer stacking through adaptive graph gating mechanism and mix-hop propagation mechanism. The output of different components are weighted fused to generate the final prediction results. Extensive experiments on two real-world large scale urban traffic dataset have verified the effectiveness, and the multi-step forecasting performance of our proposed models outperforms the state-of-the-art baselines.


2021 ◽  
Author(s):  
S. H. Al Gharbi ◽  
A. A. Al-Majed ◽  
A. Abdulraheem ◽  
S. Patil ◽  
S. M. Elkatatny

Abstract Due to high demand for energy, oil and gas companies started to drill wells in remote areas and unconventional environments. This raised the complexity of drilling operations, which were already challenging and complex. To adapt, drilling companies expanded their use of the real-time operation center (RTOC) concept, in which real-time drilling data are transmitted from remote sites to companies’ headquarters. In RTOC, groups of subject matter experts monitor the drilling live and provide real-time advice to improve operations. With the increase of drilling operations, processing the volume of generated data is beyond a human's capability, limiting the RTOC impact on certain components of drilling operations. To overcome this limitation, artificial intelligence and machine learning (AI/ML) technologies were introduced to monitor and analyze the real-time drilling data, discover hidden patterns, and provide fast decision-support responses. AI/ML technologies are data-driven technologies, and their quality relies on the quality of the input data: if the quality of the input data is good, the generated output will be good; if not, the generated output will be bad. Unfortunately, due to the harsh environments of drilling sites and the transmission setups, not all of the drilling data is good, which negatively affects the AI/ML results. The objective of this paper is to utilize AI/ML technologies to improve the quality of real-time drilling data. The paper fed a large real-time drilling dataset, consisting of over 150,000 raw data points, into Artificial Neural Network (ANN), Support Vector Machine (SVM) and Decision Tree (DT) models. The models were trained on the valid and not-valid datapoints. The confusion matrix was used to evaluate the different AI/ML models including different internal architectures. Despite the slowness of ANN, it achieved the best result with an accuracy of 78%, compared to 73% and 41% for DT and SVM, respectively. The paper concludes by presenting a process for using AI technology to improve real-time drilling data quality. To the author's knowledge based on literature in the public domain, this paper is one of the first to compare the use of multiple AI/ML techniques for quality improvement of real-time drilling data. The paper provides a guide for improving the quality of real-time drilling data.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 152 ◽  
Author(s):  
Su-qi Zhang ◽  
Kuo-Ping Lin

Short-term traffic flow forecasting is the technical basis of the intelligent transportation system (ITS). Higher precision, short-term traffic flow forecasting plays an important role in alleviating road congestion and improving traffic management efficiency. In order to improve the accuracy of short-term traffic flow forecasting, an improved bird swarm optimizer (IBSA) is used to optimize the random parameters of the extreme learning machine (ELM). In addition, the improved bird swarm optimization extreme learning machine (IBSAELM) model is established to predict short-term traffic flow. The main researches in this paper are as follows: (1) The bird swarm optimizer (BSA) is prone to fall into the local optimum, so the distribution mechanism of the BSA optimizer is improved. The first five percent of the particles with better fitness values are selected as producers. The last ten percent of the particles with worse fitness values are selected as beggars. (2) The one-day and two-day traffic flows are predicted by the support vector machine (SVM), particle swarm optimization support vector machine (PSOSVM), bird swarm optimization extreme learning machine (BSAELM) and IBSAELM models, respectively. (3) The prediction results of the models are evaluated. For the one-day traffic flow sequence, the mean absolute percentage error (MAPE) values of the IBSAELM model are smaller than the SVM, PSOSVM and BSAELM models, respectively. The experimental analysis results show that the IBSAELM model proposed in this study can meet the actual engineering requirements.


Sign in / Sign up

Export Citation Format

Share Document