Experimental Study on Force-Bearing Performance of Road Concrete which Modified by Fiber and Rubber Powder

2012 ◽  
Vol 204-208 ◽  
pp. 4015-4021
Author(s):  
Hong Bo Li ◽  
Bo Wang ◽  
Yuan Yuan Zou

Test items include compressive strength, anti-breaking strength and split strength of standard concrete, rubber concrete and fiber-rubber concrete, and 43 groups test were conducted. In order to investigate the influence of the synergistic reaction between fiber and rubber powder on force-bearing performance of concrete used in subgrade, and different blended ratio effect on strength and extension of concrete were studied. The results indicated that with the increasing of content of 40 mesh rubber powder, the compressive strength of concrete decreasing regularly; with adding the blends of fiber and rubber powder, the anti-breaking strength and extension of concrete were promoted, as to fiber - 40 mesh rubber powder concrete, the content of rubber control less than 6%, and the fiber less than 0.5%,as to 60 mesh rubber powder -10mm fiber concrete, the content of rubber control less than 6%, and the fiber less than 0.5%; as to 60 mesh rubber powder -20mm fiber concrete, the appropriate adding quantity of rubber less than 2%, and the fiber less than 0.5%.

2014 ◽  
Vol 629-630 ◽  
pp. 467-472
Author(s):  
Xiu Hua Zheng ◽  
Xu Zhang ◽  
Shi Zuo Zhan

The effects of the size and volumetric content of rubber powder on properties of concrete, including flexural strength, compressive strength and permeability, were studied in this paper. Two different particle sizes (20 meshand 60 mesh) of rubber powder were chosen to replace the sand with volume content of sand as5%, 10%, 15%, 20%, 25%, 30% respectively. The results showed that both flexural and compressive strength of concrete, especially compressive strength, decreased with the increase of rubber content. Moreover, the smaller the particle of rubber powder, the greaterer the strength of the concrete, which was not obvious as effect of rubber powder content on the strength of concrete. The impermeability of concrete increased with the increase of rubber powder content. The electric flux of concrete with 30% rubber powder reduced to about 900 C, which was only 1/5 of that with 5%. At the same content, smaller rubber particle has positiveeffects on the impermeability of concrete. Keywords: rubber concrete,rubber powder, compressive strength,flexural strength, permeability performance.


2011 ◽  
Vol 243-249 ◽  
pp. 494-498
Author(s):  
Hui Ming Bao

By means of the tests on the mechanics performance of the reinforcing concrete mixed with sisal fibers or rubber powder of certain content are investigated. The compressive strength, tensile strength and flexural strength, etc. are compared. The test indicates that when the test condition is same, the compressive strength, tensile strength and flexural strength of the sisal fibers concrete are better than those of the rubber powder’s. The sisal fiber concrete is environment friendly than the rubber powder concrete. And it has widely value of spread and utilization.


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


2014 ◽  
Vol 941-944 ◽  
pp. 761-764
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation about the ratio of bending-compressive strength of the crumb rubber concrete modified by latex,the concrete with various quantity of rubber,under the condition dosage of latex is 0.5% of cement quality.The result of experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio of bending-compressive strength could be enhanced at the same time.


2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


2015 ◽  
Vol 754-755 ◽  
pp. 348-353 ◽  
Author(s):  
Norlia Mohamad Ibrahim ◽  
Leong Qi Wen ◽  
Mustaqqim Abdul Rahim ◽  
Khairul Nizar Ismail ◽  
Roshazita Che Amat ◽  
...  

Compressive strength of concrete is the major mechanical properties of concrete that need to be focused on. Poor compressive strength will lead to low susceptibility of concrete structure towards designated actions. Many researches have been conducted to enhance the compressive strength of concrete by incorporating new materials in the concrete mixture. The dependencies towards natural resources can be reduced. Therefore, this paper presents the results of an experimental study concerning the incorporation of artificial lightweight bubbles aggregate (LBA) into cementations mixture in order to produce comparable compressive strength but at a lower densities. Three concrete mixtures containing various percentages of LBA, (10% - 50% of LBA) and one mixture used normal aggregate (NA) were prepared and characterized. The compressive strength of LBA in concrete was identified to be ranged between 39 MPa and 54 MPa. Meanwhile, the densities vary between 2000 kg/m3 to 2300 kg/m3.


2014 ◽  
Vol 919-921 ◽  
pp. 1916-1919
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation of the ratio between tensile strength and compressive strength of the Crumb Rubber Concrete Modified by latex,the concrete with various quantity of rubber,under the condition Dosage of latex is 0.5% of cement quality.The result of Experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio between tensile strength and compressive strength could be enhanced at the same time.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
H. M. A. Mahzuz ◽  
Md. Mehedi Hasan Bhuiyan ◽  
Nursat Jahan Oshin

2014 ◽  
Vol 662 ◽  
pp. 24-28 ◽  
Author(s):  
Xi Du ◽  
You Liang Chen ◽  
Yu Chen Li ◽  
Da Xiang Nie ◽  
Ji Huang

With cooling tests on polypropylene fiber reinforced concrete and plain concrete that were initially subjected to different heating temperatures, the change of mechanical properties including mass loss, uniaxial compressive strength and microstructure were analyzed. The results show that the compressive strength of concrete tend to decrease with an increase in temperature. After experiencing high temperatures, the internal fibers of the polypropylene fiber reinforced concrete melted and left a large number of voids in it, thereby deteriorating the mechanical properties of concrete.


Sign in / Sign up

Export Citation Format

Share Document