Study on Mechanical Properties and Impermeability of Rubber Concrete

2014 ◽  
Vol 629-630 ◽  
pp. 467-472
Author(s):  
Xiu Hua Zheng ◽  
Xu Zhang ◽  
Shi Zuo Zhan

The effects of the size and volumetric content of rubber powder on properties of concrete, including flexural strength, compressive strength and permeability, were studied in this paper. Two different particle sizes (20 meshand 60 mesh) of rubber powder were chosen to replace the sand with volume content of sand as5%, 10%, 15%, 20%, 25%, 30% respectively. The results showed that both flexural and compressive strength of concrete, especially compressive strength, decreased with the increase of rubber content. Moreover, the smaller the particle of rubber powder, the greaterer the strength of the concrete, which was not obvious as effect of rubber powder content on the strength of concrete. The impermeability of concrete increased with the increase of rubber powder content. The electric flux of concrete with 30% rubber powder reduced to about 900 C, which was only 1/5 of that with 5%. At the same content, smaller rubber particle has positiveeffects on the impermeability of concrete. Keywords: rubber concrete,rubber powder, compressive strength,flexural strength, permeability performance.

2021 ◽  
Vol 293 ◽  
pp. 02009
Author(s):  
Guangcheng Meng

To solve the problem of environmental pollution caused by the accumulation of granite powder and the shortage of traditional mineral admixtures, the influence of the amount of granite powder on the mechanical properties of concrete was studied by replacing cement with different amount of granite powder Different amount of granite powder can be used to prepare concrete with satisfactory performance. When the amount of granite powder is small (not more than 5%), granite powder will not reduce the compressive strength of concrete, or even slightly improve the compressive strength of pure cement concrete. When the amount of granite powder is more than 5%, the compressive strength of concrete will gradually decrease; when the amount of granite powder is more than 5%, the compressive strength of concrete will gradually decrease. The elastic modulus of concrete decreased, and the electric flux increased with the increase of the amount of admixture.


2014 ◽  
Vol 507 ◽  
pp. 421-424
Author(s):  
Qun Yu ◽  
Kun Zhang

In untreated, clean water, NaOH solution to clean, CCl4 solution to clean the rubber particles of different pretreatments as the main influencing factors, by 51 rubber concrete block pilot study reached different pretreatment methods on different rubber particle size and dosage of rubber concrete workability and compressive strength were investigated. The results show that: water, NaOH solution, CCl4 pretreatment solution, such as a rubber concrete workability and compressive strength were improved, and the rubber particles larger pretreatment on rubber compressive strength of concrete work to improve performance and more obvious.


2012 ◽  
Vol 204-208 ◽  
pp. 4015-4021
Author(s):  
Hong Bo Li ◽  
Bo Wang ◽  
Yuan Yuan Zou

Test items include compressive strength, anti-breaking strength and split strength of standard concrete, rubber concrete and fiber-rubber concrete, and 43 groups test were conducted. In order to investigate the influence of the synergistic reaction between fiber and rubber powder on force-bearing performance of concrete used in subgrade, and different blended ratio effect on strength and extension of concrete were studied. The results indicated that with the increasing of content of 40 mesh rubber powder, the compressive strength of concrete decreasing regularly; with adding the blends of fiber and rubber powder, the anti-breaking strength and extension of concrete were promoted, as to fiber - 40 mesh rubber powder concrete, the content of rubber control less than 6%, and the fiber less than 0.5%,as to 60 mesh rubber powder -10mm fiber concrete, the content of rubber control less than 6%, and the fiber less than 0.5%; as to 60 mesh rubber powder -20mm fiber concrete, the appropriate adding quantity of rubber less than 2%, and the fiber less than 0.5%.


2011 ◽  
Vol 243-249 ◽  
pp. 494-498
Author(s):  
Hui Ming Bao

By means of the tests on the mechanics performance of the reinforcing concrete mixed with sisal fibers or rubber powder of certain content are investigated. The compressive strength, tensile strength and flexural strength, etc. are compared. The test indicates that when the test condition is same, the compressive strength, tensile strength and flexural strength of the sisal fibers concrete are better than those of the rubber powder’s. The sisal fiber concrete is environment friendly than the rubber powder concrete. And it has widely value of spread and utilization.


2011 ◽  
Vol 477 ◽  
pp. 290-295 ◽  
Author(s):  
Li Bo Bian ◽  
Shao Min Song

Considering large number production of the abandoned tyres and the question of the concrete with mixture of crumb rubber,the mainly task of this paper is to study the mechanical properties of different mixing ratio concrete with vary volume of crumb rubber. The results showed that the workability, apparent density, compressive strength, flexural strength and brittleness index decrease as the increase of crumb rubber. While the anti-crack performance and anti-fatigue performance can be improved. The wear-resistance properties are a little lower than common concrete.


2014 ◽  
Vol 941-944 ◽  
pp. 761-764
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation about the ratio of bending-compressive strength of the crumb rubber concrete modified by latex,the concrete with various quantity of rubber,under the condition dosage of latex is 0.5% of cement quality.The result of experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio of bending-compressive strength could be enhanced at the same time.


2014 ◽  
Vol 919-921 ◽  
pp. 1916-1919
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation of the ratio between tensile strength and compressive strength of the Crumb Rubber Concrete Modified by latex,the concrete with various quantity of rubber,under the condition Dosage of latex is 0.5% of cement quality.The result of Experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio between tensile strength and compressive strength could be enhanced at the same time.


2014 ◽  
Vol 554 ◽  
pp. 128-132 ◽  
Author(s):  
Euniza Jusli ◽  
Hasanan Md Nor ◽  
Putra Jaya Ramadhansyah ◽  
Haron Zaiton

This study provided the test results on the mechanical properties of double layer concrete paving blocks (CPBs) obtained by replacing portions of the conventional aggregate with waste tyre rubber. The mechanical properties discussed in this paper were compressive and flexural strength. Results indicated that the density of double layer CPBs containing rubber was lower than that of conventional CPB. The decrease was found to be proportional with the waste tyre rubber content. Due to the low strength and stiffness of waste tyre rubber particle, the compressive and flexural strength of double layer CPBs containing rubber appeared to be lower than that of conventional CPB.


2015 ◽  
Vol 61 (4) ◽  
pp. 59-78 ◽  
Author(s):  
F. C. Wang ◽  
W. Song

A study was undertaken to investigate the effects of crumb rubber on the strength and mechanical behaviour of Rubberized cement soil (RCS). In the present investigation, 26 groups of soil samples were prepared at five different percentages of crumb rubber content, four different percentages of cement content and two different finenesses of crumb rubber particle. Compressive strength tests were carried out at the curing age of 7 days, 14 days, 28 days and 90 days. The test results indicated that the inclusion of crumb rubber within cement soil leads to a decrease in the compressive strength and stiffness and improves the cement soil’s brittle behaviour to a more ductile one. A reduction of up to 31% in the compressive strength happened in the 20% crumb content group. The compressive strength increases with the increase in the cement content. And the enlargement of cement content is more efficient at low cement content.


2019 ◽  
Vol 9 (5) ◽  
pp. 4596-4599 ◽  
Author(s):  
N. Bheel ◽  
R. A. Abbasi ◽  
S. Sohu ◽  
S. A. Abbasi ◽  
A. W. Abro ◽  
...  

This study was undertaken to reduce the usage of cement in concrete where different proportions of tile powder as cement replacement were used. Since in the manufacture of cement an exuberant amount of carbon dioxide is disposed of in the environment, this research aims to curtail the dependence on cement and its production. The objective of this work is to investigate the properties of fresh mix concrete (workability) and hardened concrete (compressive and splitting tensile strength) in concrete with different proportions of 0%, 10%, 20%, 30%, and 40% of tile powder as a cement substitute. In this study, a total of 90 concrete samples were cast with mix proportions of 1:1.5:3, 0.5 water-cement ratio, cured for 7, 14 and 28 days. For determining the compressive strength, cubical samples, with dimensions of 100mm×100mm×100mm, were cast, while for the determination of the splitting tensile strength, cylindrical samples with dimensions of 200mm diameter and 100mm height, were tested after 7, 14, and 28 days. The highest compressive strength of concrete achieved for tile powder concrete was 7.50% at 10% replacement after 28days of curing. The splitting tensile strength got to 10.2% when concrete was replaced with 10% of tile powder and cured for 28 days. It was also shown that with increasing percentage of the tile powder content, the workability of the fresh concrete increases.


Sign in / Sign up

Export Citation Format

Share Document