The Influence Factors of Energy Consumption and Energy Savings Potential in Office Buildings

2012 ◽  
Vol 209-211 ◽  
pp. 1820-1824
Author(s):  
Shuo Peng Zhang ◽  
Xiao Ju Xu ◽  
Rui Li

This research is aimed at exploring the influence factors of energy consumption and energy management by researching 16 big office buildings located in the north of China, and offer some energy saving suggestions by improving the user behaviors.

Author(s):  
Qing Chang ◽  
Guoxian Xiao ◽  
Lin Li ◽  
Stephan Biller

Conventionally, improving production efficiency, flexibility and responsiveness has been the primary research focus of production management, while energy consumption has received relatively little attention. Energy consumption plays a more and more important role in manufacturing environment. This is mainly driven by energy cost and environmental concerns. When the energy system becomes complicated and coupled with ongoing production, it is very difficult to hunt the “hidden treasure” which affects the overall benefit of a manufacturing system. This paper provides a systematic method for energy management in a production system. We start from dynamic production transient analysis and provide quantitative analysis for energy saving opportunity in a system. Furthermore, energy saving is integrated into production system which includes downtime and throughput to provide integrated energy management framework for a production system. A case study is conducted to demonstrate its potential on energy savings in a multi-stage manufacturing system.


Author(s):  
John A. Stankovic ◽  
Tian He

This paper presents a holistic view of energy management in sensor networks. We first discuss hardware designs that support the life cycle of energy, namely: (i) energy harvesting, (ii) energy storage and (iii) energy consumption and control. Then, we discuss individual software designs that manage energy consumption in sensor networks. These energy-aware designs include media access control, routing, localization and time-synchronization. At the end of this paper, we present a case study of the VigilNet system to explain how to integrate various types of energy management techniques to achieve collaborative energy savings in a large-scale deployed military surveillance system.


2021 ◽  
Vol 13 (24) ◽  
pp. 13863
Author(s):  
Yana Akhtyrska ◽  
Franz Fuerst

This study examines the impact of energy management and productivity-enhancing measures, implemented as part of LEED Existing Buildings Operations and Management (EBOM) certification, on source energy use intensity and rental premiums of office spaces using data on four major US markets. Energy management practices, comprised of commissioning and advanced metering, may reduce energy usage. Conversely, improving air quality and occupant comfort in an effort to increase worker productivity may in turn lead to higher overall energy consumption. The willingness to pay for these features in rental office buildings is hypothesised to depend not only on the extent to which productivity gains enhance the profits of a commercial tenant but also on the lease arrangements for passing any energy savings to the tenant. We apply a difference-in-differences method at a LEED EBOM certification group level and a multi-level modelling approach with a panel data structure. The results indicate that energy management and indoor environment practices have the expected effect on energy consumption as described above. However, the magnitude of the achieved rental premiums appears to be independent of the lease type.


Author(s):  
Yigit Fidansoy ◽  
Sohejl Wanjani ◽  
Sebastian Schmidt

Due to the increasing scarcity of fossil fuels and the climate change, the importance of energy efficiency is increasing. This importance is major especially in areas where the energy consumption is high. Rail transport depicts such an area. The highest proportion of energy consumed in the railway is the so called traction energy. This energy is required for the train run. In the timetable, allowances leave a margin for the driving style of train run. By the selective use of strategies that change the driving style, it is possible to exploit these allowances and reduce the traction energy consumption. The first objective of this study deals with the development of algorithms for energy-saving driving style. First, the necessary input variables of the algorithms based on the literature research and the formulas of train dynamics were determined. Then the algorithms were developed to create different energy-saving driving styles, resulting choose the best result which should be shown as a driving recommendation. The developed algorithms were used in an application example in order to calculate the potential of energy-savings. The example should represent the influence of the input variables for a comparison of different situations. At last the acceptance of the determined driving strategies in practice was investigated. By implementing the design thinking method it was identified that driver advisory systems and training programs are necessary to facilitate energy-saving driving in practice.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
ZhenHua Li ◽  
ZhiHong Zou ◽  
LiPing Wang

Wastewater treatment plant (WWTP) is the energy-intensive industries. Energy is consumed at every stage of wastewater treatment. It is the main contributor to the costs of WWTP. Analysis and forecasting of energy consumption are critical to energy-saving. Many factors influence energy consumption. The relationship between energy consumption and wastewater is complex and challenging to identify. This article employed the fuzzy clustering method to categorize the sample data of WWTP and analyzed the relationship between energy consumption and the influence factors in different categories. The study found that energy efficiency in various categories was changed and the same influence factors in different types had different influence intensity. The Radial Basis Function (RBF) neural network was used to forecast energy consumption. The data from the complete set and categories was adopted to train and test the model. The results show that the RBF model using the date from the subset has better performance than the multivariable linear regression (MLR) model. The results of this study provided an essential theoretical basis for energy-saving in WWTP.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 485 ◽  
Author(s):  
Clement Lork ◽  
Vishal Choudhary ◽  
Naveed Ul Hassan ◽  
Wayes Tushar ◽  
Chau Yuen ◽  
...  

In this paper, we develop an ontology-based framework for energy management in buildings. We divide the functional architecture of a building energy management system into three interconnected modules that include building management system (BMS), benchmarking (BMK), and evaluation & control (ENC) modules. The BMS module is responsible for measuring several useful environmental parameters, as well as real-time energy consumption of the building. The BMK module provides the necessary information required to understand the context and cause of building energy efficiency or inefficiency, and also the information which can further differentiate normal and abnormal energy consumption in different scenarios. The ENC module evaluates all the information coming from BMS and BMK modules, the information is contextualized, and finally the cause of energy inefficiency/abnormality and mitigating control actions are determined. Methodology to design appropriate ontology and inference rules for various modules is also discussed. With the help of actual data obtained from three different rooms in a commercial building in Singapore, a case study is developed to demonstrate the application and advantages of the proposed framework. By mitigating the appropriate cause of abnormal inefficiency, we can achieve 5.7%, 11.8% and 8.7% energy savings in Room 1, Room 2, and Room 3 respectively, while creating minimum inconvenience for the users.


2019 ◽  
Vol 9 (5) ◽  
pp. 858 ◽  
Author(s):  
Yu Dong ◽  
Xue Cui ◽  
Xunzhi Yin ◽  
Yang Chen ◽  
Haibo Guo

This research evaluates the operational heating and cooling energy consumption of cross-laminated timber (CLT) office buildings in China. The evaluations involve a comparison of the energy consumption of a reference RC structure and CLT system office buildings. Computational simulation results are based on IES-VE 2019 and show that the estimated heating energy saving ratio of CLT buildings in Harbin, Beijing, Shanghai, and Kunming to the reference structure are 11.97%, 22.11%, 30.94%, and 23.30% respectively. However, the CLT buildings consume more energy for cooling in the summer. The results of the research show significantly higher heating energy reductions for CLT buildings in the Cold Region and Severe Cold Regions of China. Thus, the application of the CLT system is better suited to northern China than southern China. The results of the research can be used in further assessment of the use of CLT systems in different climatic regions in China.


2016 ◽  
Vol 26 (6) ◽  
pp. 796-812 ◽  
Author(s):  
Heangwoo Lee ◽  
Sang-hoon Gim ◽  
Janghoo Seo ◽  
Yongseong Kim

Various ongoing studies regard light-shelves as one solution to the recent increase in lighting energy consumption. However, in previous light-shelf systems, the direction of incoming light was determined by external conditions, thereby limiting the efficiency of lighting energy saving. The purpose of the present study was to develop a movable light-shelf system with location-awareness technology and verify its performance. In this study, a full-scale testbed was established in order to test the proposed movable light-shelf system with location awareness as well as to verify its energy saving potential. The results were analysed and compared with the performances of previous fixed (Case 1) and movable (Case 2) light-shelf systems without location-awareness technology. The obtained results were as follows. (1) The proposed light-shelf system can respond to external conditions and to the location of the occupant by means of the control axis of the light-shelf module angle through modulation between the control axis of the angle of the previous light-shelf and the reflector of the light-shelf. (2) The proposed light-shelf system provides 90.0% and 86.6%/91.0% energy savings in comparison to Case 1 and Case 2, respectively.


2011 ◽  
Vol 280 ◽  
pp. 71-75
Author(s):  
Zhong Chao Zhao ◽  
Dong Hui Zhang ◽  
Yu Ping Chen

In this paper, the operation mechanism of combined air-conditioning system with temperature and humidity decoupled treatment (CACSTHDT) was presented, and the energy saving potential and economics of CACSTHDT were primarily analyzed through compared with a traditional air-conditioning system. The results indicated that CACSTHDT could save up to 28.64% energy consumption in comparison with a traditional air-conditioning system. The operating cost in one summer only was 71.36% of that cost of traditional air-conditioning system.


2015 ◽  
Vol 74 (2) ◽  
Author(s):  
Mohd Hafizal Ishak ◽  
Ibrahim Sipan ◽  
Abdul Hamid Mar Iman ◽  
Maimunah Sapri

Towards sustainable campus of higher education institutions (HEIs), energy consumption behaviour is one of the several matters that require attention by the facilities manager. Information on energy consumption behaviour helps on developing a good strategy for energy management. The purpose of this study is to assess energy consumption behaviour among Malaysian HEIs student. This study has an objective to determine energy consumption patterns and analyse the factors that influence the pattern. The 'energy culture' framework consolidated with 'centrographic' approach and econometric analysis used to strengthen the findings. A self-administrated survey carried out involving 158 respondents in Universiti Teknologi Malaysia, Johor. There are three types of energy use among students in HEIs namely, 'high', 'low', and 'conserve'. The 'device', 'activities' and 'building regulation' are the influence factors on the pattern of energy use.


Sign in / Sign up

Export Citation Format

Share Document