Vibration Analysis of Needle-Punching Machine Slider-Crank Mechanism

2012 ◽  
Vol 215-216 ◽  
pp. 730-734
Author(s):  
Jun Hui Xie ◽  
Jian Chang Yuan

After analysis of the movement characteristics of needle-punching machine slider-crank mechanism in theory, a slider-crank mechanism acceleration curve had been rendered by MATLAB software and acceleration movement curve had been drawn after the measurement of acceleration of slider-crank mechanism by ADAMS simulation software. Through the comparison between the two results, a conclusion had been drawn. Finally, 3 advice of minishing vibration had been given according to the conclusion of calculation of acceleration by Quality Substitution Method,the first advice is the quality and site of the balance block are chose appropriately,the second advice is the weight of the slider and the connecting rod need to be reduced by choosing appropriate material.

2012 ◽  
Vol 490-495 ◽  
pp. 1659-1663
Author(s):  
Tie Yi Zhang ◽  
Yun Zhang ◽  
Xiao Rong Zhou

According to the functional requirements of mechanical seismic simulation platform exciter, a new exciter with dual driven slider-crank mechanism is designed to achieve stepless amplitude adjustment and multi-frequency vibration output. Based on the ADAMS simulation software, design features of mechanical seismic simulation platform exciter are verified.


2013 ◽  
Vol 477-478 ◽  
pp. 384-387
Author(s):  
Qin Hong Chen ◽  
Dong Ming Sun ◽  
De Hua Zhao ◽  
Gui Rong Kang ◽  
Jian Sun

Kinematics simulation study on Morse CVT input mechanism was established by using simulation software Adams, and it can get curves of displacement, velocity and acceleration of input mechanism of each bar to research its movement characteristics. This method is suit for kinematics simulation of connecting rod mechanism, meanwhile it can modify corresponding simulation parameter and is easy to do optimal design.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Yan-Shin Shih ◽  
Chen-Yuan Chung

This paper investigates the dynamic response of the cracked and flexible connecting rod in a slider-crank mechanism. Using Euler–Bernoulli beam theory to model the connecting rod without a crack, the governing equation and boundary conditions of the rod's transverse vibration are derived through Hamilton's principle. The moving boundary constraint of the joint between the connecting rod and the slider is considered. After transforming variables and applying the Galerkin method, the governing equation without a crack is reduced to a time-dependent differential equation. After this, the stiffness without a crack is replaced by the stiffness with a crack in the equation. Then, the Runge–Kutta numerical method is applied to solve the transient amplitude of the cracked connecting rod. In addition, the breathing crack model is applied to discuss the behavior of vibration. The influence of cracks with different crack depths on natural frequencies and amplitudes is also discussed. The results of the proposed method agree with the experimental and numerical results available in the literature.


Author(s):  
Meng Ning ◽  
Zhi Wu ◽  
Lianjie Chen ◽  
Fan Zhang ◽  
Huitao Chen

Research and design an intelligent bed and chair integration system for assisting inconvenient mobility and aging population. The system consists of a removable detached wheelchair and a c-shaped bed with a fixed structure. The user can switch freely between the mobile wheelchair and the bed to meet the user's requirements of free movement and repositioning.Through the simulation software to analyze the movement characteristics of the bed backboard, the angle of the take-off and landing of the backboard and the sudden change of the take-off and abrupt angular velocity will cause the user to have dizziness and discomfort. In the case of determining the speed of the driving push rod, the relationship between mechanism parameters and installation parameters is the key to affect the lifting rate of the rear plate. Modeling and analysis of each mechanism is performed to determine the relationship between the mechanism parameters and the take-off and landing speed of the backplane. After optimizing the mechanism, the simulation is compared again to obtain the optimal solution. Finally, the optimal solution parameter is the final solution to improve the overall comfort of the nursing bed.


Author(s):  
K. Sriram ◽  
K. Anirudh ◽  
B. Jayanth ◽  
J. Anjaneyulu

The main objective of the Suspension of a vehicle is to maximize the contact between the vehicle tires and the road surface, provide steering stability and provide safe vehicle control in all conditions, evenly support the weight of the vehicle, transfer the loads to springs, and guaranteeing the comfort of the driver by absorbing and dampening shock. This paper discusses the kinematic design of a double a-arm Suspension system for an FSAE Vehicle. The hardpoint’s location can be determined using this procedure to simulate motion in any kinematic simulation software. Here, Optimum Kinematics is used as kinematic simulation software, and the results are verified using Msc Adams simulation. The method illustrated deals with the basics of Kinematics which helps to predict the characteristics of the Suspension even before simulating it in the kinematic simulation software.


2020 ◽  
Vol 318 ◽  
pp. 01004
Author(s):  
Miroslav Blatnický ◽  
Ján Dižo

In this article, authors focus on the design and construction of a real prototype of an engine mechanism with rotating cylinders and its using mainly in piston combustion engines. It is assumed, that the normal force of a piston will be completely eliminated, because the swing angle of a connecting rod will equal to zero during the whole working cycle, since the connecting arm of the piston moves just the cylinder axis. It will by allowed by the conceptual design of the mechanism presented in this article. As rotating blocks of cylinders concurrently act as a flywheel, it is proposed, that in this way there is possible to save the mass of additional flywheels. Moreover, liquid cooling system is not necessary, because the rotating cylinders sufficiently transfer heat to ambient air. In addition, the output of torque will be reached without necessity of gear transmission, which results to decreasing of needs of mechanism lubrication. Other advance of the designed mechanism are two outputs. The first output is low-speed and it goes out from rotating cylinders, i. e. from the slider-crank mechanism with revolutions n1. The other output is high-speed, from the crankshaft with revolutions n2. Because of more favourable properties of the mechanism, authors have decided to create a real device to confirm all mentioned advantages of the mechanism by the suitable way.


1971 ◽  
Vol 93 (2) ◽  
pp. 636-644 ◽  
Author(s):  
Peter W. Jasinski ◽  
Ho Chong Lee ◽  
George N. Sandor

The research involved in this paper falls into the area of analytical vibrations applied to planar mechanical linkages. Specifically, a study of the vibrations, associated with an elastic connecting-bar for a high-speed slider-crank mechanism, is made. To simplify the mathematical analysis, the vibrations of an externally viscously damped uniform elastic connecting bar is taken to be hinged at each end (i.e., the moment and displacement are assumed to vanish at each end). The equations governing the vibrations of the elastic bar are derived, a small parameter is found, and the solution is developed as an asymptotic expansion in terms of this small parameter with the aid of the Krylov-Bogoliubov method of averaging. The elastic stability is studied and the steady-state solutions for both the longitudinal and transverse vibrations are found.


2013 ◽  
Vol 821-822 ◽  
pp. 188-194
Author(s):  
Sizo Ncube ◽  
Chu Yang Zhang ◽  
Edison Omollo ◽  
Li Liu

The study examined the effect of heat and time on fabrics made from polyester (PET) and polyvinyl alcohol (PVA) fibres which have different aerial densities and composed of 90% and 10% of PET and PVA respectively. PVA is included in the fabric due to its water solubility and this will allow the PVA to be removed thereby leaving a more porous fabric. The fabrics were passed through needle punching machine and PVA removed by heating in a water bath. The nonwoven fibre was then heated in water at temperatures of 75, 85 and 100 °C in an effort to remove the PVA fibres and leave a more porous fabric. While removing the PVA through heating in a water bath, the effect of heating period and the temperature on the fabric properties was investigated. The strength, elongation and structure of the fabric were investigated and the changes analysed. It was found that there was a significant removal of PVA at longer periods of time when at a high temperature. The effect on the properties was found to be higher with higher temperatures as well with a decrease in strength ranging between 40% and 60% being experienced while an increase in elongation, between 60% and 90% was experienced. Fibre spacing and pore size was found to have increased as well.


Sign in / Sign up

Export Citation Format

Share Document