Seismic Damage Evaluation of Recycled Concrete Frame Using Wavelet Transform

2012 ◽  
Vol 226-228 ◽  
pp. 1076-1080 ◽  
Author(s):  
Bo Hu ◽  
Bing Kang Liu ◽  
Cheng Gang Wang

According to the pseudo static tests on a two-storey and single-span concrete frame made with recycled aggregates, the failure pattern, hysteresis loop curves, displacement ductility of the recycled aggregate concrete frame are investigated. The time histories of loads and displacements are decomposed to four different levels by using the wavelet packet transform. Based on the decomposition coefficients on the 4th level, a seismic damage index is developed and presented in this paper. The cumulative damage process of this recycled aggregate concrete frame under low reverse cyclic loading is also analyzed by using this damage index. The experiment results clearly indicate that recycled aggregate concrete frames have excellent seismic behaviors. The damage index given in this paper can accurately and effectively reflect the severity of damage for structures under different loading states.

2012 ◽  
Vol 174-177 ◽  
pp. 1277-1280 ◽  
Author(s):  
Hai Yong Cai ◽  
Min Zhang ◽  
Ling Bo Dang

Compressive strengths of recycled aggregate concrete(RAC) with different recycled aggregates(RA) replacement ratios at 7d, 28d, 60d ages are investigated respectively. Failure process and failure mode of RAC are analyzed, influences on compressive strength with same mix ratio and different RA replacement ratios are analyzed, and the reason is investigated in this paper. The experimental results indicate that compressive strength of recycled concrete at 28d age can reach the standard generally, it is feasible to mix concrete with recycled aggregates, compressive strength with 50% replacement ratio is relatively high.


Recycled aggregates (RCA) are the aggregates which are made up of crushed, inorganic particles that are obtained from the construction demolition debris. Now a day’s protection of environment is the ultimate challenge to the society. So the usage of RCA’s is the best alternative for the aggregates which are obtained naturally in the construction activity. The scope of using these recycled concrete aggregates is increasing day by day. It reduces the cost effectively as we are using waste concrete as recycled aggregates. The main focus of this paper is to use find the strength qualities of recycled aggregates so as to use it as an alternative for the natural aggregates in high strength concrete for various construction activities. Comparison of workability, compressive strength, tensile strength, elastic modulus and flexural strength of recycled aggregate concrete is made with natural aggregate concrete. Here M25 grade concrete is taken and the natural aggregates were replaced with recycled aggregates in various percentages of 0%, 25%, 50%, 75% and 100%. The mix design for these replacement ratios are done by using code of IS 10262-2009. In order to determine the properties which were mentioned above a total of 60 cubes, 10 beams and 40 cylinders were casted. The compressive strength and tensile strength of RCA concrete have been determined for 7 days and 28 days where as the modulus of elasticity and the flexural strength of RCA concrete are determined after curing for the period of 28 days. The tests done on RCA concrete are compared with concrete which is obtained by natural aggregates As per IS codification the parameters which were determined are reducing moderately as the amount of aggregates which are recycled is being raised


2019 ◽  
Vol 303 ◽  
pp. 05004
Author(s):  
Khaoula NAOUAOUI ◽  
Azzeddine BOUYAHYAOUI ◽  
Toufik CHERRADI

The field of construction is evolving rapidly over the last decade. This is justified by the evolution of human activity in various fields mainly tourism, industry … and the aging of several buildings which implies a renovation or a demolition/re-construction. These construction activities involve a large need for aggregates for new construction and a large tonnage of waste from demolitions. In order to remedy this, various stakeholders in the field (suppliers, cement works, research centers, etc.) have valued recycled aggregate concrete (RAC). Recycled aggregates concrete is considered a new type of concrete based on the use of aggregates retrieved from the demolished structures instead of natural aggregates. This replacement affects, for sure, the characteristics of the concrete produced specially the mechanical properties. Developed countries have made a great progress in normalizing the use of recycled aggregates (RA) in concrete implementation as a result of many studies done since 80’s. In Morocco, recycled aggregates do not have any specific standards, and is used mainly in roads and pavements construction. Even if it’s not normalized this use is not recent, in 1999 during the rehabilitation of the expressway road of Casablanca which was severely damaged on both channels, the authorities have opted for the reuse of aggregates instead of reloading the existing pavement with a new one. The study is based on the use of recycled concrete crushed from an old building in Rabat- Morocco as aggregates and compared it with naturel aggregates from Morocco to determinate the effect of this replacement on several characteristics of concrete. This article is aiming to investigate experimentally the effect of RA in concrete using different replacement levels, different types of adjuvant and different percentages of it. The results show that over 30% of replacement, the compressive strength decreases considerably for basic concrete. In order to increase the compressive strength for the RAC with a percentage of replacement over 50%, we used different types of additives (Plasticizer, superplasticizer and new generation superplasticizer) and different percentage of it (0.5%, 1% and 1.5%): We concludes that, for our case, the add of plasticizer gives the best result and that the 1% replacement is the optimum percentage. The tests done on RCA made by plasticizer with different replacement level confirm the results without plasticizer: Compressive strength decreases when the replacement percentage increases.


2019 ◽  
Vol 8 (3) ◽  
pp. 3439-3443

Use of reused aggregate in concrete can be useful for the ecological protection and economical terms. The application of recycled has been started in many construction projects. Paper hear says the basic properties of recycled concrete aggregate. It similarly relates the properties with natural aggregate, similarly the properties of recycled aggregates concrete were also determined and explained here. For the concrete grades of M25 and M30, the recycled aggregate concrete is produced by changing the natural aggregate, by recycled aggregate in conventional concrete with 5%, 10% and 15% of weight of natural aggregates. Experimental studies were carried out on influence of recycled aggregate treatment and comparison of strength properties of conventional cement concrete and recycled aggregate concrete at the curing of 7days and 28 days. They are two types of treatments under the considerations for recycled aggregates are Abrasion of recycled aggregate and chemical immersion


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5675
Author(s):  
Caroline S. Rangel ◽  
Mayara Amario ◽  
Marco Pepe ◽  
Enzo Martinelli ◽  
Romildo D. Toledo Filho

Recently, concerns have been rising about the impact of increasing the depletion of natural resources and the relevant generation of construction and demolition waste, on the environment and economy. Therefore, several efforts have been made to promote sustainable efficiency in the construction industry and the use of recycled aggregates derived from concrete debris for new concrete mixtures (leading to so-called recycled aggregate concrete, RAC) is one of the most promising solutions. Unfortunately, there are still gaps in knowledge regarding the durability performances of RAC. In this study, we investigate durability of structural RAC subjected to wet-dry cycles. We analyze the results of an experimental campaign aimed at evaluating the degradation process induced by wetting and drying cycles on the key physical and mechanical properties of normal- and high-strength concrete, produced with coarse recycled concrete aggregates (RCAs) of different sizes and origins. On the basis of the results we propose a degradation law for wetting and drying cycles, which explicitly makes a possible correlation between the initial concrete porosity, directly related to the specific properties of the RCAs and the resulting level of damage obtained in RAC samples.


2019 ◽  
Vol 262 ◽  
pp. 06010
Author(s):  
Marek Węglorz ◽  
Andrzej Ajdukiewicz ◽  
Alina Kliszczewicz

Assessment of recycled aggregate concrete (RAC) properties by laboratory tests is still required due to lack of precise guidelines and with taking into account slightly different behaviour of such concretes in comparison with natural aggregate concretes (NAC). It is especially important when recycled concrete aggregates are used for the structural elements. In this paper, the following rules for the whole concrete recycling cycle were defined: (1) rules for examination of original concretes selected for recycling and (2) rules for aggregate preparation and their fractionize as well as design rules for recycled aggregate concrete mixtures (including required tests of recycled aggregates and concrete properties). Requirements towards recycled aggregate concrete formulated in this paper are based on the long term experience and research works on the RAC which were held by A. Ajdukiewicz and A. Kliszczewicz in the Department of Structural Engineering of the Silesian University of Technology, practically since 1995.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Idi Priyono ◽  
Meiske Widyarti, Erizal

An excessive extraction of natural resources for aggregate in concrete mix can caused an environmental degradation.  According to Indonesia ministry of industry in 2017, the use of cement is predicted will reach 84,96 million tons, that can affected the use of aggregate for concrete mix are quadruplet to 250 – 350 million tons. Opimally, the use of recycled material is green method that can reduce an excessive extraction of natural aggregates and keep an environmental sustain. The aim of this study is to obtain recycled aggregate concrete compressive strength and examine recycled aggregate concrete quality in days 3, 7, 28, 35, and 90 along with a proposal of the use of recycled aggregate concrete as a building construction material. This research used experimental method of SNI 03-2834-2002 the standard of normal concrete mix design for f’c 25 MPa then built five types of concrete mix of REC B, REC C, REC D, REC E, and REC F with every types of concrete has four sample are used for compressive strength test. The fine recycled paving block aggregate (RPA) were used partially to substituted a fine recycled brick aggregate (RBA) at 0%, 25%, 50%, 75%, and 100% by weigth. The result of this study showed the mixed concrete REC D with RCA 100%, RPA 50% and RBA 50% in 28 days is generate highest compressive strength than other recycle aggregates concrete mixes. Compressive strength at 28 days in a mix codes REC B, REC C, REC D, REC E and REC F are 18,12 MPa; 18,36 MPa; 19,35 MPa;16,69 MPa; and 16,39 MPa. The results show that it is feasible to replace a natural aggregate entirely by recycled aggregates. With compressive strength over 17 MPa at 28 days, mix codes REC B, REC C and REC D are recommended to use the recycled aggregate concrete for structure of residential buildings but mix codes REC E and REC F aren’t recommended and only allowed for non-structural concrete such as separate wall (SNI 8140:2016). Based on SNI 03-0691-1996 about solid brick concrete (paving block), recycle aggregate concrete with mix code of REC B, REC C, and REC D are able to use on paving block with B quality such as parking lot. While, recycled aggregate concrete with mix code of REC E and REC F are able to use on paving block with C and D quality which used for pedestrian, garden and other use. 


2019 ◽  
Vol 26 (2) ◽  
pp. 210-217 ◽  
Author(s):  
Jinghai ZHOU ◽  
Tianbei KANG ◽  
Fengchi WANG

Permeability is one of the major performances for recycled aggregate concrete, which affects the durability and service life of concrete structures. In most cases, the main factor affecting the permeability of recycled aggregate concrete is the pore structure. Considering water-cement ratio, replacement rate of recycled aggregates, waste fiber length, and volume fraction of waste fibers as the design variables, pore structure and gas permeability were studied experimentally. In addition, fractal theory was here used to assess the pore structure of waste fiber recycled concrete and study the effects of pore structure on permeability. The results showed that the pore size distribution had a small impact on the permeability with the water-cement ratio and replacement rate of recycled aggregates increasing. The fractal dimension can be used to describe the complexity of the pore structure quantitatively. There is an obvious linear relationship between fractal dimension and gas permeability. The larger the pore volume fractal dimension, the better the impermeability of waste fiber recycled concrete.


2019 ◽  
Vol 4 (2) ◽  
pp. 37 ◽  
Author(s):  
Saud Alfayez ◽  
Mohamed Ali ◽  
Moncef Nehdi

This study explores highly eco-efficient preplaced aggregate concrete mixtures having superior tensile characteristics and impact resistance developed for pavement and infrastructure applications. A fully recycled granular skeleton consisting of recycled concrete aggregate and recycled tire rubber granules, and steel wire fibers from scrap tires are first placed in the formwork, then injected with a flowable grout. Considering its very high recycled content and limited mixing and placement energy (only the grout is mixed, and no mechanical vibration is needed), this material has exceptional sustainability features and offers superior time and cost savings. Moreover, typical problems of rapid loss of workability due to the high-water absorption of recycled aggregates and the floating of lightweight tire rubber granules are prevented since the aggregates are preplaced in the formwork. The much higher granular content and its denser skeleton reduce the cementitious dosage substantially and provide high volume stability against shrinkage and thermal strains. The behavior under impact loading of this sustainable preplaced recycled aggregate concrete, incorporating randomly dispersed steel wire fibers retrieved from scrap tires, was investigated using a drop weight impact test. The results show that recycled tire steel wire fibers significantly enhanced the tensile and impact properties. A two-parameter Weibull distribution provided an accurate prediction of the impact failure strength of the preplaced recycled aggregate concrete mixtures, allowing to avert additional costly laboratory experiments.


Sign in / Sign up

Export Citation Format

Share Document