Green Synthesis of Silver Nanoparticles Using Two Lichens Species: Parmotrema praesorediosum and Ramalina dumeticola

2012 ◽  
Vol 229-231 ◽  
pp. 256-259 ◽  
Author(s):  
Ropisah Mie ◽  
Mohd Wahid Samsudin ◽  
Laily B. Din ◽  
Azizan Ahmad

Chemical synthetic method in synthesizing silver nanoparticle was quite expensive, toxic and flammable. In order to enhance green technology, we develop a simple biological method for the green synthesis of silver nanoparticles using two lichens species, Parmotrema praesorediosum and Ramalina dumeticola. Silver nanoparticles were characterized using UV-Vis absorption spectroscopy and TEM. Within 72 hours reaction time, absorption spectra of silver nanoparticles formed in R. dumeticola and P. praesorediosum has absorbance peak at 407 nm and 423 nm, respectively. TEM analysis showed the average size of 20 nm of silver nanoparticles obtained in R. dumeticola and the average size of 42 nm of silver nanoparticles obtained in P. praesorediosum. These two lichens species are able to synthesize silver nanoparticles through green chemistry method, which are environmental friendly and cost effective. This is for the first time that any species of lichens was used for the synthesis of silver nanoparticles.

2015 ◽  
Vol 1109 ◽  
pp. 35-39 ◽  
Author(s):  
M.K. Nahar ◽  
Zarina Zakaria ◽  
U. Hashim ◽  
Md Fazlul Bari

The synthesis of nanoparticles is in the spotlight in modern nanotechnology. In recent years, the development of competent green chemistry methods for synthesis of metal nanoparticles (NPs) has become a main limelight of researchers. Biological synthesis of nanoparticles using plant extract is currently under exploitation. The first time in this paper we have reported the green synthesis of silver nanoparticles (AgNPs) by reduction of silver nitrate, using fruit extracts of Momordica charantia (bitter melon); commonly found plant in south East Asia. The reaction process for the synthesis of silver nanoparticles is simple, cost-effective, novel, rapid and eco-friendly route using fruit extract of M. charantia plant, which acted as a reducing and stabilizing agent simultaneously at room temperature. Formation of the nanosilver was confirmed by surface Plasmon spectra using UV-Vis spectrophotometer and absorbance peak at 440 nm. Different silver ion concentration and contact times were experimenting in the synthesis of silver nanoparticles. The prepared nanoparticles properties were characterized by UV-Vis.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2383
Author(s):  
Majid Sharifi-Rad ◽  
Pawel Pohl ◽  
Francesco Epifano ◽  
José M. Álvarez-Suarez

Today, the green synthesis of metal nanoparticles is a promising strategy in material science and nanotechnology. In this research, silver nanoparticles (AgNPs) were synthesized through the high-efficient, cost-effective green and facile process, using the Astragalus tribuloides Delile. root extract as a bioreduction and capping agent at room temperature. UV–Vis spectroscopy was applied for the investigation of the reaction proceedings. To characterize the greenly synthesized AgNPs, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), and transmission electron microscopy (TEM) analyses were utilized. In addition, the total phenolics and flavonoids contents, antioxidant, antibacterial, and anti-inflammatory activities of the greenly synthesized AgNPs and the A. tribuloides root extract were evaluated. The results indicated that the AgNPs had spherical morphology and crystalline structure with the average size of 34.2 ± 8.0 nm. The total phenolics and flavonoids contents of the greenly synthesized AgNPs were lower than those for the A. tribuloides root extract. The resultant AgNPs exhibited the appropriate antioxidant activity (64%) as compared to that for the A. tribuloides root extract (47%). The antibacterial test approved the higher bactericidal activity of the resulting AgNPs on the Gram-positive and Gram-negative bacteria in comparison to the A. tribuloides root extract. Considering the anti-inflammatory activity, the greenly synthesized AgNPs showed a stranger effect than the A. tribuloides root extract (82% versus 69% at 500 μg/mL). Generally, the AgNPs that were fabricated by using the A. tribuloides root extract had appropriate antioxidant, antibacterial, and anti-inflammatory activities and, therefore, can be considered as a promising candidate for various biomedical applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Gaurav Sharma ◽  
Nakuleshwar Dut Jasuja ◽  
Manoj Kumar ◽  
Mohammad Irfan Ali

The present study explores biological synthesis of silver nanoparticles (AgNPs) using the cell-free extract ofSpirulina platensis. Biosynthesised AgNPs were characterised by UV-Vis spectroscopy, SEM, TEM, and FTIR analysis and finally evaluated for antibacterial activity. Extracellular synthesis using aqueous extract ofS. platensisshowed the formation of well scattered, highly stable, spherical AgNPs with an average size of 30–50 nm. The size and morphology of the nanoparticles were confirmed by SEM and TEM analysis. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilisation of AgNPs. Furthermore, the synthesised nanoparticles exhibited high antibacterial activity against pathogenic Gram-negative, that is,Escherichia coli, MTCC-9721;Proteus vulgaris, MTCC-7299;Klebsiella pneumoniae, MTCC-9751, and Gram-positive, that is,Staphylococcus aureus, MTCC-9542;S. epidermidis, MTCC-2639;Bacillus cereus, MTCC-9017, bacteria. The AgNPs had shown maximum zone of inhibition (ZOI) that is31.3±1.11inP. vulgaris. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials of silver in a large scale that could be of great use in biomedical applications.


Author(s):  
Wilson Mbiti Njue ◽  
Jackson Kilonzo Kithokoi ◽  
Jane Mburu ◽  
Henry Mwangi ◽  
Sauda Swaleh

Metal nanoparticles in the field of nanotechnology are of great interest to modern scientific research due to their size effects, medical uses and, catalytic, electronic and optical properties. Green synthesis of metal nanoparticles is a feasible alternative to chemical methods as it is environmentally friendly and cost effective. In continuation with our research on green synthesis of silver nanoparticles using Kenyan medicinal plants, we here report the synthesis of novel silver nanoparticles (AgNPs) on ultrasonic bath using Adansonia digitata leaves extracts and analysis of their antibacterial activity. The nanoparticles were characterized by UV-Vis, High Resolution Transmission Electron Microscopy (HRTEM), FTIR spectroscopy and Energy Dispersive X-ray (EDX). EDX analysis affirmed the nanoparticles were pure silver. Crystalline nature of the nanoparticles was confirmed by bright circular spots in the Selected Area Electron Diffraction (SAED) in HRTEM image. The AgNPs were spherical with an average size 13 nm. FTIR analysis showed strong –C=C- and –OH stretching bands due to compounds capping the nanoparticles. The synthesized AgNPs showed high inhibition zones of 17.1±0.130 mm towards Gram-negative bacteria E. coli and 12.9±0.082mm towards Gram positive bacteria S. aureus. The aqueous A. digitata extract had no effect on growth inhibition of test bacteria. The study showed that the silver nanoparticles synthesized from the plant’s leaves extract had antibacterial activity against both Gram negative and positive pathogenic bacteria. The nanoparticles can be utilized towards developing novel drugs useful in combating pathogens.


2021 ◽  
Author(s):  
Tanmoy Dutta ◽  
Swapan Kumar Chowdhury ◽  
Narendra Nath Ghosh ◽  
Mahuya Das ◽  
Asoke P. Chattopadhyay ◽  
...  

Abstract The present study reports a novel, one-pot, cost-effective, green synthesis route of silver nanoparticles (AgNPs) from the fruit extract of Glycosmis pentaphylla (FGP). The UV–vis spectroscopy (UV-Vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies confirmed that the synthesis produces stable, monodispersed AgNPs with an average size of 17 nm. Theoretical simulation using density functional theory (DFT) established that among the different compounds of FGP, arborine is mainly responsible for the stabilization of AgNPs with a binding energy of 58.45 kJ/mol. Synthesized AgNPs showed strong antifungal and antibacterial activity. The synergistic study of AgNPs with fungicide Bavistin and antibiotic Streptomycin produced remarkable morphological abnormalities of A. alternata as observed under the light microscope. Hence, the AgNPs synthesis approach is a progressive step towards various applications to soon control crop and human pathogens.


2020 ◽  
Vol 26 (40) ◽  
pp. 5188-5204
Author(s):  
Uzair Nagra ◽  
Maryam Shabbir ◽  
Muhammad Zaman ◽  
Asif Mahmood ◽  
Kashif Barkat

Nanosized particles, with a size of less than 100 nm, have a wide variety of applications in various fields of nanotechnology and biotechnology, especially in the pharmaceutical industry. Metal nanoparticles [MNPs] have been synthesized by different chemical and physical procedures. Still, the biological approach or green synthesis [phytosynthesis] is considered as a preferred method due to eco-friendliness, nontoxicity, and cost-effective production. Various plants and plant extracts have been used for the green synthesis of MNPs, including biofabrication of noble metals, metal oxides, and bimetallic combinations. Biomolecules and metabolites present in plant extracts cause the reduction of metal ions into nanosized particles by one-step preparation methods. MNPs have remarkable attractiveness in biomedical applications for their use as potential antioxidant, anticancer and antibacterial agents. The present review offers a comprehensive aspect of MNPs production via top-to-bottom and bottom-to-top approach with considerable emphasis on green technology and their possible biomedical applications. The critical parameters governing the MNPs formation by plant-based synthesis are also highlighted in this review.


2018 ◽  
Vol 9 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Shubhangi J. Mane-Gavade ◽  
Sandip R. Sabale ◽  
Xiao-Ying Yu ◽  
Gurunath H. Nikam ◽  
Bhaskar V. Tamhankar

Introduction: Herein we report the green synthesis and characterization of silverreduced graphene oxide nanocomposites (Ag-rGO) using Acacia nilotica gum for the first time. Experimental: We demonstrate the Hg2+ ions sensing ability of the Ag-rGO nanocomposites form aqueous medium. The developed colorimetric sensor method is simple, fast and selective for the detection of Hg2+ ions in aqueous media in presence of other associated ions. A significant color change was noticed with naked eye upon Hg2+ addition. The color change was not observed for cations including Sr2+, Ni2+, Cd2+, Pb2+, Mg2+, Ca2+, Fe2+, Ba2+ and Mn2+indicating that only Hg2+ shows a strong interaction with Ag-rGO nanocomposites. Under the most suitable condition, the calibration plot (A0-A) against concentration of Hg2+ was linear in the range of 0.1-1.0 ppm with a correlation coefficient (R2) value 0.9998. Results & Conclusion The concentration of Hg2+ was quantitatively determined with the Limit of Detection (LOD) of 0.85 ppm. Also, this method shows excellent selectivity towards Hg2+ over nine other cations tested. Moreover, the method offers a new cost effective, rapid and simple approach for the detection of Hg2+ in water samples.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 473
Author(s):  
Prabu Kumar Seetharaman ◽  
Rajkuberan Chandrasekaran ◽  
Rajiv Periakaruppan ◽  
Sathishkumar Gnanasekar ◽  
Sivaramakrishnan Sivaperumal ◽  
...  

To develop a benign nanomaterial from biogenic sources, we have attempted to formulate and fabricate silver nanoparticles synthesized from the culture filtrate of an endophytic fungus Penicillium oxalicum strain LA-1 (PoAgNPs). The synthesized PoAgNPs were exclusively characterized through UV–vis absorption spectroscopy, Fourier Transform Infra-Red spectroscopy (FT-IR), X-ray powder diffraction (XRD), and Transmission Electron Microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX). The synthesized nanoparticles showed strong absorbance around 430 nm with surface plasmon resonance (SPR) and exhibited a face-centered cubic crystalline nature in XRD analysis. Proteins presented in the culture filtrate acted as reducing, capping, and stabilization agents to form PoAgNPs. TEM analysis revealed the generation of polydispersed spherical PoAgNPs with an average size of 52.26 nm. The PoAgNPs showed excellent antibacterial activity against bacterial pathogens. The PoAgNPs induced a dose-dependent cytotoxic activity against human adenocarcinoma breast cancer cell lines (MDA-MB-231), and apoptotic morphological changes were observed by dual staining. Additionally, PoAgNPs demonstrated better larvicidal activity against the larvae of Culex quinquefasciatus. Moreover, the hemolytic test indicated that the as-synthesized PoAgNPs are a safe and biocompatible nanomaterial with versatile bio-applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Akshay Rajeev Geetha ◽  
Elizabeth George ◽  
Akshay Srinivasan ◽  
Jameel Shaik

Production of silver nanoparticles from the leaf extracts ofPimenta dioicais reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.


Author(s):  
Utkarsh Jain ◽  
CS Pundir ◽  
Shaivya Gupta ◽  
Nidhi Chauhan

Recent advancements in nanotechnology, for the biosynthesis of metal nanoparticles through enormous techniques, showed multidimensional developments. One among many facets of nanotechnology is to procure and adopt new advancements for green technology over chemical reduction synthesis. This adaptation for acquiring green nanotechnology leads us to a new dimension of nanobiotechnology. In order to imply one such efforts, in this study the emphasis is being laid on the synthesis of MgO nanoparticles using green technology and eliminating chemical reduction methods. Different characterization techniques such as UV–Vis spectroscopy, transmission electron microscopy, and dynamic light scattering were used to carry out the experiments. The average size of MgO nanoparticles were obtained in the range of 85–95 nm, when synthesized by various sources. The extracts of plants were capable of producing MgO nanoparticles efficiently and exhibited good results during cyclic voltammetry and electrochemical impedance spectroscopy study. The electrode modified with MgO nanoparticles (plant extract) showed good stability (90 days) and high conductivity. This study reports cost-effective and environment-friendly method for synthesis of MgO nanoparticles using plant extracts. The process is rapid, simple, and convenient and can be used as an alternative to chemical method.


Sign in / Sign up

Export Citation Format

Share Document