Study of Impact of Gas Cooler Cooling Circuit on Heat Transfer Performance

2012 ◽  
Vol 236-237 ◽  
pp. 224-229
Author(s):  
Bing Qiang He ◽  
Chun Ling Liao

Experimental study on the structure and characteristics of cooling circuit of full-aluminum parallel flow gas cooler. The experimental tests on the built cell-type and ternary GCMCPF are conducted. In the heat transfer processes of the cooler with different circuit structures, the impact of CO2 refrigerant side flow resistance and the mass flow on the heat transfer performance of gas cooler is measured. The results show that the ternary type GCMCPF structure can enhance the heat transfer for CO2 fluid at the weak heat transfer area in the cell-type GCMCPF. Within a certain range of mass flow, the former heat transfer is 1.5 times the later one, and the structural sizes of GCMCPF can be reduced in the same requirements for heat transfer.

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1016
Author(s):  
Weishu Wang ◽  
Lingwei Guo ◽  
Ge Zhu ◽  
Xiaojing Zhu ◽  
Qincheng Bi

Experimental investigations on the heat transfer performance of supercritical water flowing in the subchannel of supercritical water-cooled reactor (SCWR) simulated by a triangular channel were conducted at pressures of 23–28 MPa, mass flow rates of 700–1300 kg·m−2·s−1, and inner wall surface heat fluxes of 200–600 kW·m−2. An 8 mm diameter fuel rod with a 1.4 pitch to diameter ratio was used. The effects of pressure, mass flow rate, and heat flux on the heat transfer performance under the resistance of a standard grid spacer were analyzed. Experimental results showed the significant positive influence of the grid spacer on the supercritical water in the subchannel. Moreover, in the presence of the grid spacer, the parameters influenced the heat transfer with different degrees of strengthening reaction. In view of the phenomenon in the tests, the rule of the supercritical heat transfer was further revealed by the comparison between empirical formulas and experimental data. This paper mainly studied the positioning grid function and the fluid flow characteristics downstream of the subchannel under the influence of the standard grid spacer and the impact mechanism of each parameter on the whole heat transfer process coefficient.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Filippo Coletti ◽  
Tom Verstraete ◽  
Jérémy Bulle ◽  
Timothée Van der Wielen ◽  
Nicolas Van den Berge ◽  
...  

This two-part paper addresses the design of a U-bend for serpentine internal cooling channels optimized for minimal pressure loss. The total pressure loss for the flow in a U-bend is a critical design parameter, as it augments the pressure required at the inlet of the cooling system, resulting in a lower global efficiency. In the first part of the paper, the design methodology of the cooling channel was presented. In this second part, the optimized design is validated. The results obtained with the numerical methodology described in Part I are checked against pressure measurements and particle image velocimetry (PIV) measurements. The experimental campaign is carried out on a magnified model of a two-legged cooling channel that reproduces the geometrical and aerodynamical features of its numerical counterpart. Both the original profile and the optimized profile are tested. The latter proves to outperform the original geometry by about 36%, in good agreement with the numerical predictions. Two-dimensional PIV measurements performed in planes parallel to the plane of the bend highlight merits and limits of the computational model. Despite the well-known limits of the employed eddy viscosity model, the overall trends are captured. To assess the impact of the aerodynamic optimization on the heat transfer performance, detailed heat transfer measurements are carried out by means of liquid crystals thermography. The optimized geometry presents overall Nusselt number levels only 6% lower with respect to the standard U-bend. The study demonstrates that the proposed optimization method based on an evolutionary algorithm, a Navier–Stokes solver, and a metamodel of it is a valid design tool to minimize the pressure loss across a U-bend in internal cooling channels without leading to a substantial loss in heat transfer performance.


Author(s):  
Feng Sun ◽  
G.-X. Wang

This paper presents a numerical study of turbulent flow and heat transfer in a bayonet tube under steady state. First, various turbulent models and wall treatment methods have been tested and validated against the experimental result from a turbulent air jet. The proper combination of turbulent model and wall treatment is then recommended for the turbulent flow within a bayonet tube. The study focuses on the heat transfer performance at the interface of working fluid and the outer tube wall under different Reynolds numbers. Various geometry parameters are considered in this work and the impact of geometry on the heat transfer performance is investigated. Results indicate that the heat transfer at the bottom of the bayonet tube is enhanced compared with that at the straight part. At low Re (< 8000), the maximum Nu occurs at the stagnation point, while the position of the maximum Nu moves away from the stagnant point as Re exceeds 8000. The results are believed to be helpful for the optimized design of a bayonet tube with fully turbulent flows.


Author(s):  
Farzad Houshmand ◽  
Yoav Peles ◽  
Michael Amitay

A liquid film has been introduced upstream of a heater in a microchannel with gas flow, and the impact on the heat transfer performance has been investigated. The shear force exerted by the gas flow on the gas-liquid interface drives the film and drags it downstream, onto the heated area. Distilled water was injected through a 350 μm circular hole in a main stream of Nitrogen in a 220 μm deep and 1.5 mm wide rectangular microchannel to enhance the heat transfer from a 1 mm × 1 mm heater. Average heat transfer coefficient was studied for different gas and liquid flow rates and compared with single-phase flow. Significant improvement in heat transfer performance was observed while the pressure drop in the channel was not increased dramatically.


Author(s):  
Robert A. Clark ◽  
Nicholas Plewacki ◽  
Pritheesh Gnanaselvam ◽  
Jeffrey P. Bons ◽  
Vaishak Viswanathan

Abstract The interaction of thermal barrier coating’s surface temperature with CMAS (calcium magnesium aluminosilicate) like deposits in gas turbine hot flowpath hardware is investigated. Small Hastelloy X coupons were coated in TBC using the air plasma spray (APS) method and then subjected to a thermal gradient via back-side impingement cooling and front-side impingement heating using the High Temperature Deposition Facility (HTDF) at The Ohio State University (OSU). A 1-D heat transfer model was used to estimate TBC surface temperatures and correlate them to intensity values taken from infrared (IR) images of the TBC surface. TBC frontside surface temperatures were varied by changing back-side mass flow (kept at a constant temperature), while maintaining a constant hot-side gas temperature and jet velocity representative of modern commercial turbofan high-pressure turbine (HPT) inlet conditions (approximately 1600K and 200 m/s, or Mach 0.25). In this study, Arizona Road Dust (ARD) was utilized to mimic the behavior of CMAS attack on TBCs. To identify the minimum temperature at which particles adhere, the back-side cooling mass flow was set to the maximum amount allowed by the test setup, and trace amounts of 0–10 μm ARD particles were injected into the hot-side flow to impinge on the TBC surface. The TBC surface temperature was increased through coolant reduction until noticeable deposits formed, as evaluated through an IR camera. Accelerated deposition tests were then performed where approximately 1 gram of ARD was injected into the hot side flow while the TBC surface temperature was held at various points above the minimum observed deposition temperature. Surface deposition on the TBC coupons was evaluated using an infrared camera and a backside thermocouple. Coupon cross sections were also evaluated under a scanning electron microscope for any potential CMAS ingress into the TBC. Experimental results of the impact of surface temperature on CMAS deposition and deposit evolution and morphology are presented. In addition, an Eulerian-Lagrangian solver was used to model the hot-side impinging jet with particles at four TBC surface temperatures and deposition was predicted using the OSU Deposition model. Comparisons to experimental results highlight the need for more sophisticated modeling of deposit development through conjugate heat transfer and mesh morphing of the target surface. These results can be used to improve physics-based deposition models by providing valuable data relative to CMAS deposition characteristics on TBC surfaces, which modern commercial turbofan high pressure turbines use almost exclusively.


Author(s):  
Tosha Churitter

Pins are a common type of extended surface used in the field of heat transfer; their main application being in the electronics field. Historically, pins used in heat exchangers have diameters that are considered negligible in comparison to their lengths and are therefore termed as tubes. In this report, the use of pins as an extended surface is investigated for the heat transfer on the airside (cold) of the Compact Advanced Pin Surface Heat Exchanger. The pins are circular in cross section and follow a staggered arrangement. The uniqueness of the pin design is such that they cannot be treated as tubes. Key Pin Design features are as follows: • Pins have a maximum Length: Diameter ratio of 3. • Pin Spacing to Pin Diameter ratio is greater than in traditional arrangements. • Pins function as a primary as well as secondary surface. The heat transfer performance of extended surfaces possessing the above features has not been characterized, using commercially available Computational Fluid Dynamics (CFD) software, in any research specifically focused on applications for the aerospace industry. Based on actual test results, this study specially develops a unique approach that can predict the outlet temperature of the heat exchanger to within 1% accuracy. This ‘developed’ approach is applied over cold-side mass flow rates ranging from 0.05 kg/s to 0.23 kg/s, while keeping the hot side mass flow rate constant at 0.05 kg/s. At worst, the simulation results lie within 5% accuracy and at best the simulation accuracy is 1%, a significant improvement on traditional derivations. This article specifically discusses the methodology developed to analyse the heat transfer performance of the novel pin design using Fluent 6.2. It highlights the current limitations of existing equations as well as the theoretical knowledge gap that currently exists in the analysis of pins as extended heat transfer surfaces in heat exchangers.


2011 ◽  
Vol 236-238 ◽  
pp. 1572-1575 ◽  
Author(s):  
Hong Liu ◽  
Hu Gen Ma ◽  
Chang Sheng Li

Experimental investigation of falling film evaporation on horizontal tubes was carried out in this paper. Tube surface, spray flow rate and coolant flow rate were the factors considered in the experiment. The impact on falling film evaporation performance was obtained as expected. Experimental results are obtained that the heat transfer performances of low finned tubes are better than that of smooth tubes. The increasing of flow rate enhances heat transfer performance of falling film evaporation at first, while the flow rate gets a certain value, it will hinder the improvement of heat transfer performance. It was also found that there is almost no effects on heat transfer coefficient when the flow rate of coolant changes.


Sign in / Sign up

Export Citation Format

Share Document