The Dynamic Response Analysis on Train Liquid Storage Tanks under Harmonic Excitation

2012 ◽  
Vol 238 ◽  
pp. 248-251 ◽  
Author(s):  
Qing Hua Zhang

This paper take the typical train liquid storage tank as research object, the fluid-solid coupling dynamic responses of the tank are analyzed under the track irregularities using finite element software ANSYS. The research indicates that the difference of the liquid volume in tank has great influence to the structural stress and strain. When the tank is not filled with liquid, the liquid has large-scale amplitude sloshing, and the stress and strain are much bigger than the static condition. But if the tank is full of the liquid, the stress and total amount of deformity of the tank can be obviously reduced.

2013 ◽  
Vol 438-439 ◽  
pp. 1125-1128
Author(s):  
Qing Hua Zhang ◽  
Dong Jie Yan

Take the typical train liquid storage tank as research object, the vibration modes and the fluid-solid coupling dynamic responses of the tank are analyzed under the impulsive excitation using finite element software ANSYS. The research indicates that the difference of the liquid volume in tank has great influence to the structural stress and strain. With the increasing of the liquid volume, the tank natural frequencies gradually reduced, so the liquid sloshing have great effect on the structural vibration modes. And if the tank is full of the liquid, the stress and total deformation of the tank can be obviously reduced.


2011 ◽  
Vol 94-96 ◽  
pp. 1941-1945
Author(s):  
Yi Wu ◽  
Chun Yang ◽  
Jian Cai ◽  
Jian Ming Pan

Elasto-plastic analysis of seismic responses of valve hall structures were carried out by using finite element software, and the effect of seismic waves on the seismic responses of the valve hall structures and suspension equipments were studied. Results show that significant torsional responses of the structure can be found under longitudinal and 3D earthquake actions. Under 3D earthquake actions, the seismic responses of the suspension valves are much more significant than those under 1D earthquake actions, the maximum tensile force of the suspenders is about twice of that under 1D action. The seismic responses of the suspension valves under vertical earthquake actions are much stronger than those under horizontal earthquake actions, when suffering strong earthquake actions; the maximum vertical acceleration of the suspension valves is about 4 times of that under horizontal earthquake actions. It is recommended that the effects of 3D earthquake actions on the structure should be considered in seismic response analysis of the valve hall structure.


Author(s):  
Zhou Fang ◽  
Zhiping Chen ◽  
Guodong Jia ◽  
Hui Wang ◽  
Xiang Li

A large-scale earthquake simulation experiment about the unanchored cylindrical steel liquid storage model tanks has been completed. The self-vibration characteristics of the model tanks with liquid inside were investigated based on the experimental data of the acceleration dynamic response. The seismic table test, the analysis methods are designed and conducted, and experimental results of the model tanks were carefully measured. Furthermore, ANSYS finite element software was used to simulate and calculate the low order natural frequency and fundamental frequency of the model tank systems according to the national design standard. The reasons for the existence of consistency and differences among the results obtained from experiments, numerical simulation and national design standard were discussed.


2019 ◽  
Vol 23 (2) ◽  
pp. 289-306
Author(s):  
Tao Huo ◽  
Lewei Tong

This study discusses the wind-induced response of existing pitch-controlled 1.25 MW wind turbine structures, with a particular focus on the influence of the blade-rotation effect, cross-wind loads of the tubular tower and the wind direction, and compares numerical responses with the measured dynamic responses. An integrated finite-element model consisting of blades, a nacelle, a tower and a foundation is established. The aerodynamic loads exerted on the rotating blades and the aerodynamic loads acting on the tubular tower are then obtained. A wind-induced response calculation method of the wind turbine structures corresponding to different wind speeds and wind directions is established for performing a wind-induced response analysis. Finally, comparisons between the measured responses and the corresponding numerical response results are performed to verify the accuracy of the proposed wind-induced response calculation method. The results indicate that neglecting the cross-wind aerodynamic loads of large-scale wind turbine structures can lead to unsafe design. The wind direction has different influences on the along-wind and cross-wind dynamic responses. The statistical values of the measured dynamic responses are slightly greater than those of the numerical analysis results, but the magnitudes of the responses are the same. Therefore, the proposed wind-induced response calculation method for wind turbine structures is feasible and reasonable. It can be used to conduct the fatigue life prediction of wind turbine tubular towers in future research which is an important issue in the structural design of wind turbine tubular tower structures.


2017 ◽  
Vol 12 (5) ◽  
pp. 868-881
Author(s):  
Yohsuke Kawamata ◽  
Manabu Nakayama ◽  
Ikuo Towhata ◽  
Susumu Yasuda ◽  
◽  
...  

Underground structures are generally considered to have high seismic performance and expected to play an important role as a base for reconstruction even after a destructive earthquake. Rigidity changing points, such as jointed and curved portions of underground structure, where localized deformation and stress is supposed to be generated, are ones of the most critical portions in terms of seismic performance of underground structure. Because the underground structure in a mega-city functions as a network, local damage could lead to fatal dysfunction. Accordingly, rigidity changing points and their surrounding area could significantly influence the resiliency of urban functions, and it is indispensable to evaluate their seismic performance and dynamic responses during earthquakes. The responses of rigidity changing points and their surrounding area to earthquakes have been tried evaluating by using large-scale numerical analyses, there is no case available where the responses have been measured in detail. For this reason, it is difficult to verify the validity of the results of such evaluations.In light of the above, the shake table test was conducted at E-Defense using a coupled specimen of soil and underground structures to obtain detailed data, especially on the localized responses around rigidity changing points during the earthquake. Based on the data obtained, the behavior of the underground structure with a curved portion at the time of an earthquake was analyzed comprehensively. As a result of the analysis on the test data, it is found that there is a strong correlation between the localized deformation of the curved portion of the tunnel and the displacement of the surrounding ground. In addition, it is necessary to conduct a three-dimensional seismic response analysis not only around the rigidity changing point but also in wider area.


2014 ◽  
Vol 716-717 ◽  
pp. 569-572
Author(s):  
Di Tang ◽  
Zhi Liang Lu ◽  
Bin Bin Lv ◽  
Tong Qing Guo

It is presented that the nonlinear aeroelastic effect is considered for the dynamic response analysis of large scale horizontal wind turbine. The blade of wind turbine is built by composite laminate model using the finite element method. The unsteady aerodynamic loads are predicted with prescribed vortex wake method, which considers the aerodynamic-structural coupling effects. The aerodynamic loads are applied to the blade structure model, and the nonlinear dynamic aeroelastic equations are established. The equations are linearized and the blade modes are obtained at the static equilibrium position, thus the dynamic responses of a blade are calculated using the modal method. The results show that the geometry nonlinearity reduces the vibration amplitudes of the blade.


2019 ◽  
Vol 9 (11) ◽  
pp. 2376 ◽  
Author(s):  
Wei Jing ◽  
Huan Feng ◽  
Xuansheng Cheng

Based on potential flow theory and arbitrary Lagrangian–Eulerian method, shell–liquid and shell–wind interactions are solved respectively. Considering the nonlinearity of tank material and liquid sloshing, a refined 3-D wind–shell–liquid interaction calculation model for liquid storage tanks is established. A comparative study of dynamic responses of liquid storage tanks under wind, earthquake, and wind and earthquake is carried out, and the influences of wind speed and wind interference effect on dynamic responses of liquid storage tank are discussed. The results show that when the wind is strong, the dynamic responses of the liquid storage tank under wind load alone are likely to be larger than that under earthquake, and the dynamic responses under wind–earthquake interaction are obviously larger than that under wind and earthquake alone. The maximum responses of the tank wall under wind and earthquake are located in the unfilled area at the upper part of the tank and the filled area at the lower part of the tank respectively, while the location of maximum responses of the tank wall under wind–earthquake interaction is related to the relative magnitude of the wind and earthquake. Wind speed has a great influence on the responses of liquid storage tanks, when the wind speed increases to a certain extent, the storage tank is prone to damage. Wind interference effect has a significant effect on liquid storage tanks and wind fields. For liquid storage tanks in special environments, wind and earthquake effects should be considered reasonably, and wind interference effects cannot be ignored.


2020 ◽  
Vol 165 ◽  
pp. 04081
Author(s):  
Shuqi Zhang ◽  
Jin Li ◽  
Jingyuan Li ◽  
Jiaolei Zhang

In order to study the dynamic response of the integrated station-bridge structure under the pile-soil interaction, a model was established by finite element software for dynamic analysis. According to a practical project, two mechanical models are established: one is the pile-soil interaction model, the other is the rigid foundation model. The dynamic responses of the two models were analyzed respectively, and then the results were compared. The results show that: the structure with pile-soil interaction has a longer period and higher flexibility; Under the action of frequently occurred earthquakes, the maximum displacement of the structure with pile-soil interaction increases and the base shear decreases; Under the action of seldomly occurred earthquakes, the structural displacement and base shear under the pile-soil interaction become larger, and the transverse displacement is more affected than the longitudinal displacement. It is concluded that: the assumption of rigid foundation makes the result more conservative, and the influence of pile-soil interaction cannot be ignored in seismic response analysis.


2014 ◽  
Vol 494-495 ◽  
pp. 763-766
Author(s):  
De Yu Liu ◽  
Zhou Fang

A large-scale earthquake simulation experiment about the unanchored cylindrical steel liquid storage model tanks has been completed. The self-vibration characteristics of the model tanks with liquid inside were investigated based on the experimental data of the acceleration dynamic response. The seismic table test, the analysis methods are designed and conducted, and experimental results of the model tanks were carefully measured. Furthermore, ANSYS finite element software was used to simulate and calculate the low order natural frequency and fundamental frequency of the model tank systems according to the national design standard. The reasons for the existence of consistency and differences between the results obtained from experiments and numerical simulation were discussed.


2015 ◽  
Vol 744-746 ◽  
pp. 315-318
Author(s):  
Hao Du ◽  
Chun Hua Liu

The terrorism and regional conflicts posed a threat to the world peace. Some terrorist explosions caused collapse of the buildings, which brought heavy tragedies to the human components. Therefore research on damage of structural components and resistance to damage have become the focus of our attention. Finite element software LS-DYNA was applied to simulating the response of reinforced concrete columns under blast loading. And analysis on dynamic response under different loading period was carried out. By studying on the stress and strain of reinforced concrete columns subjected to blast loading, the possible failure modes were obtained. In addition, the bearing capacities of concrete columns that are reinforced with carbon fiber and steel panel were analyzed, and the reinforcement effects were compared to provide reasonable reinforcement schemes for structures blast-resistant design.


Sign in / Sign up

Export Citation Format

Share Document