Investigating the Flexural Behaviour of Foams at High Strain Rate Using Optical Measurement Techniques

2013 ◽  
Vol 569-570 ◽  
pp. 799-804
Author(s):  
Duncan A. Crump ◽  
Janice M. Dulieu-Barton

Polymer closed cell foam beam specimens manufactured from H100 Divinycell (Diab) are tested in four point bend at three loading speeds using a specially designed rig and an Instron VHS test machine. Synchronised high speed images are captured using white light and infra-red thermography (IRT) to obtain the mid-point full-field deflection and strains using digital image correlation (DIC) along with the temperature evolutions. There is a marked increase in the maximum load to failure with loading rate and the optical techniques provide an opportunity to analyse the strain and temperature evolution within the specimens.

2007 ◽  
Vol 7-8 ◽  
pp. 265-270 ◽  
Author(s):  
Thorsten Siebert ◽  
Thomas Becker ◽  
Karsten Spiltthof ◽  
Isabell Neumann ◽  
Rene Krupka

The reliability for each measurement technique depends on the knowledge of it’s uncertainty and the sources of errors of the results. Among the different techniques for optical measurement techniques for full field analysis of displacements and strains, digital image correlation (DIC) has been proven to be very flexible, robust and easy to use, covering a wide range of different applications. Nevertheless the measurement results are influenced by statistical and systematical errors. We discuss a 3D digital image correlation system which provides online error information and the propagation of errors through the calculation chain to the resulting contours, displacement and strains. Performance tests for studying the impact of calibration errors on the resulting data are shown for static and dynamic applications.


2011 ◽  
Vol 70 ◽  
pp. 45-50
Author(s):  
Thorsten Siebert ◽  
Wei Zhuo Wang ◽  
John E. Mottershead ◽  
Andrea Pipino

For the analysis of vibrations and mode shape extraction in particular the use of optical full-field measurement techniques has grown during the last years. Beside techniques like Digital Speckle Pattern Interferometry, Moiré, Thermography or Photoelasticity the Digital Image Correlation techniques have already been successfully proven to be an accurate displacement analysis tool for a wide range of applications.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1602
Author(s):  
Ángel Molina-Viedma ◽  
Elías López-Alba ◽  
Luis Felipe-Sesé ◽  
Francisco Díaz

Experimental characterization and validation of skin components in aircraft entails multiple evaluations (structural, aerodynamic, acoustic, etc.) and expensive campaigns. They require different rigs and equipment to perform the necessary tests. Two of the main dynamic characterizations include the energy absorption under impact forcing and the identification of modal parameters through the vibration response under any broadband excitation, which also includes impacts. This work exploits the response of a stiffened aircraft composite panel submitted to a multi-impact excitation, which is intended for impact and energy absorption analysis. Based on the high stiffness of composite materials, the study worked under the assumption that the global response to the multi-impact excitation is linear with small strains, neglecting the nonlinear behavior produced by local damage generation. Then, modal identification could be performed. The vibration after the impact was measured by high-speed 3D digital image correlation and employed for full-field operational modal analysis. Multiple modes were characterized in a wide spectrum, exploiting the advantages of the full-field noninvasive techniques. These results described a consistent modal behavior of the panel along with good indicators of mode separation given by the auto modal assurance criterion (Auto-MAC). Hence, it illustrates the possibility of performing these dynamic characterizations in a single test, offering additional information while reducing time and investment during the validation of these structures.


2018 ◽  
Vol 183 ◽  
pp. 02006 ◽  
Author(s):  
Amos Gilat ◽  
Jeremy D. Seidt

The Split Hopkinson Bar (SHB) technique is used for high strain rate testing of T800/F3900 composite in compression, tension and shear. Digital Image Correlation (DIC) is used for measuring the full-field deformation on the surface of the specimen by using Shimadzu HPV-X2 high-speed video camera. Compression tests have been done on specimens machined from a unidirectional laminate in the 0°and 90° directions. Tensile tests were done in the 90° direction. Shear tests were done by using a notched specimen in a compression SHB apparatus. To study the effect of strain rate, quasi-static testing was also done using DIC and specimens with the same geometry as in the SHB tests. The results show that the DIC technique provides accurate strain measurements even at strains that are smaller than 1%. No strain rate effect is observed in compression in the 0° direction and significant strain rate effects are observed in compression and tension in the 90° direction, and in shear.


2016 ◽  
Vol 23 (3) ◽  
pp. 461-480 ◽  
Author(s):  
Sze-Wei Khoo ◽  
Saravanan Karuppanan ◽  
Ching-Seong Tan

Abstract Among the full-field optical measurement methods, the Digital Image Correlation (DIC) is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC) is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.


2010 ◽  
Vol 24-25 ◽  
pp. 115-120 ◽  
Author(s):  
Michael R.L. Gower ◽  
Richard M. Shaw

This paper details work undertaken towards the development of a standard test method for the biaxial response of planar cruciform specimens manufactured from carbon fibre-reinforced plastic (CFRP) laminates and subject to tension-tension loading. Achieving true biaxial failure in a cruciform specimen without the need for the inclusion of a stress raiser, such as a hole, in the gauge-section, is a subject attracting much research globally and is by no means a trivial exercise. Coupon designs were modelled using finite element analysis (FEA) in order to predict the stress and strain distributions in the central region of the specimen. An Instron biaxial strong-floor test machine was used to test the specimens. Strain gauges were used to measure the strain in the specimen arms and to assess the degree of bending. Digital image correlation (DIC) was used to measure the full-field strain distribution in the central gauge-section of the specimen and this was compared to values measured using strain gauges. The strain readings obtained from strain gauges, DIC and FEA predictions were in good agreement and showed that the strain distribution was uniform in the central gauge-section, but that strain concentrations existed around the tapered thickness zone. These regions of strain concentration resulted in interlaminar failure and delamination of the laminate propagating into the specimen arms.


2011 ◽  
Vol 70 ◽  
pp. 135-140 ◽  
Author(s):  
G. Le Louëdec ◽  
M.A. Sutton ◽  
Fabrice Pierron

Welding is one of the most popular joining technologies in industry. Depending on the materials to be joined, the geometry of the parts and the number of parts to be joined, there is a wide variety of methods that can be used. These joining techniques share a common feature: the material in the weld zone experiences different thermo-mechanical history, resulting in significant variations in material microstructure and spatial heterogeneity in mechanical properties. To optimize the joining process, or to refine the design of welded structures, it is necessary to identify the local mechanical properties within the different regions of the weld. The development of full-field kinematic measurements (digital image correlation, speckle interferometry, etc.) helps to shed a new light on this problem. The large amount of experimental information attained with these methods makes it possible to visualize the spatial distribution of strain on the specimen surface. Full-field kinematic measurements provide more information regarding the spatial variations in material behaviour. As a consequence, it is now possible to quantify the spatial variations in mechanical properties within the weld region through a properly constructed inverse analysis procedure. High speed tensile tests have been performed on FSW aluminium welds. The test was performed on an MTS machine at a cross-head speed of up to 76 mm/s. Displacement fields were measured across the specimen by coupling digital image correlation with a high-speed camera (Phantom V7.1) taking 1000 frames per second. Then, through the use of the virtual fields method it is possible to retrieve the mechanical parameters of the different areas of the weld from the strain field and the loading. The elastic parameters (Young’s modulus and Poisson’s ratio) are supposed to be constant through the weld. Their identification was carried out using the virtual fields method in elasticity using the data of the early stage of the experiment. Assuming that the mechanical properties (elastic and plastic) of the weld are constant through the thickness, the plastic parameters were identified on small sections through the specimen, using a simple linear hardening model. This method leads to a discrete identification of the evolution of the mechanical properties through the weld. It allows the understanding of the slight variations of yield stress and hardening due to the complexity of the welding process.


Author(s):  
Stephan Karmann ◽  
Christian Friedrich ◽  
Maximilian Prager ◽  
Georg Wachtmeister

Abstract To address one of the main environmental concerns, the engine out emissions, an enhanced understanding of the combustion process itself is fundamental. Recent optical and laser optical measurement techniques provide a promising approach to investigate and optimize the combustion process regarding emissions. These measurement techniques are already quite common for passenger car and truck size engines and significantly contribute to their improvement. Transferring these measurement techniques to large bore engines from low to high speed is still rather more uncommon especially due to the bigger challenges caused by the engine size and thus much higher stability requirements and design effort for optical accessibility. To cover this new field of research a new approach for a medium speed large bore engine was developed using a fisheye optic mounted centrally in the cylinder head to design a fully optically accessible engine test bench. This new approach is detailed with a test setup layout and a stability concept consisting of cooling systems and the development of a suitable operation strategy based on simulation and experimental verification. The design of this single cylinder engine with 350mm bore and 440mm stroke providing 530kW nominal load at 750 rpm was tested up to 85% nominal load in skipped fire engine operation mode. The measurements of the flame chemiluminescence of a dual fuel combustion of the diesel gas type present proof of the feasibility of the new design as a starting point for future systematic studies on the combustion process of large bore engines.


2019 ◽  
Vol 54 (4) ◽  
pp. 519-533
Author(s):  
Ariana Paradiso ◽  
Isabella Mendoza ◽  
Amanda Bellafato ◽  
Leslie Lamberson

The purpose of this study is to quantitatively characterize the compressive and damage behavior of a woven fiberglass composite under combined environmental loading. Cuboidal samples of a commercially available woven fiberglass epoxy resin composite, garolite G10, are examined under uniaxial compressive loading perpendicular to the plies at quasi-static (10−3 s−1) and dynamic (103 s−1) strain rates using a standard load frame and Kolsky (split-Hopkinson) bar. In order to simulate environmental conditions, a subset of samples were soaked in either distilled or ASTM standard seawater prior to loading. Two time periods of environmental conditioning were investigated: short term at two weeks and long term at four months. Results demonstrate that, on average, the dynamic compressive strength of the fiberglass increased 35% from the quasi-static. Moreover, environmentally treated samples generally experienced a decrease strain to failure, and composites exposed to water for only short periods exhibited signs of the absorbed water sustaining additional load under quasi-static rates. Ultra-high-speed photography combined with digital image correlation, a full-field surface kinematic measurement technique, is used to map 2D strains on the sample during loading. In all cases, a clear shear failure mechanism from local instabilities appears, and a Mohr–Coulomb failure criterion is used to extract a mesoscale cohesive shear stress and coefficient of internal friction.


2015 ◽  
Vol 782 ◽  
pp. 49-58
Author(s):  
Han Liu ◽  
Peng Wan Chen ◽  
Bao Qiao Guo ◽  
Shao Long Zhang ◽  
Hai Bo Liu ◽  
...  

In this paper, the dynamic deformation and rupture of pre-notched thin metal plates subjected to confined blast loading were investigated. The thin copper plates with cross-shape pre-notch were clamped on the end of a confined cylinder vessel by a cover flange. An explosive charge with a mass of 4g was detonated in the vessel center to generate blast load acting on the metal plates. The images of metal plates were recorded by two high-speed cameras. The displacement and strain fields during the deformation and rupture process were measured by using 3D digital image correlation (3D DIC). The effects of pre-notches on the dynamic deformation and rupture of thin metal plates were analyzed. The microstructure of fracture surface was examined The 3D DIC technique is proven to be an effective method to conduct dynamic full-field deformation measurement.


Sign in / Sign up

Export Citation Format

Share Document