Oxidation Behavior of Reheating Hot Work Die Steels

2012 ◽  
Vol 249-250 ◽  
pp. 896-899
Author(s):  
Ji Ung Choi ◽  
Ho Sung Lee

At hot working condition, forming tools must be durable at operating temperatures during continuous forming process and especially dimensional stability and corrosion resistant property are required. In this paper, oxidation behavior of several hot work die steels was studied at elevated temperature forming condition. It is shown that test specimens begin to form oxides at the surface during the initial heating period. Transient oxidation is observed during the initial stage of oxidation, in which the initial fast reaction rates may be related to local thermal instabilities such as fast nucleation of oxide grains due to microstructural variation or chemical potential differences through the thin initial oxide layer. When initial mass gain does not contribute to steady state parabolic law, the Pieraggi model is successfully applied to the high temperature oxidation of tool steels. Based on this information, suitable forming die material was selected for reheating application above 850°C.

2010 ◽  
Vol 152-153 ◽  
pp. 940-944
Author(s):  
Hua Chen ◽  
Jing Chao Zhang ◽  
X.Y Lu

The spark plasma sintering (SPS) microstructure and high temperature oxidation behavior of TiH2-45Al-0.2Si-5Nb(at.%) alloy were investigated.Emphasis was placed on the effect of SPS microstructures, obtained by blend powder and mechanical alloying powder. The mass gain due to oxidation was measured using an electro balance. The oxide layers as well as its micro-structure were examined by SEM and EDS, and XRD. The results show that sintered microstructure of blend powder is composed of fully lamellar TiAl/ Ti3Al phase, and that of the mechanical alloying powder is composed of finer granular TiAl/Ti3Al phase. The latter oxidation rate is lower, and forms continuous mixed oxide layer of Al2O3 and TiO2. Both SPS microstructure of blend powder and mechanical alloying powder are superior in oxidation behavior to ordinary vacuum sintering.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 668 ◽  
Author(s):  
Mihaela Raluca Condruz ◽  
Gheorghe Matache ◽  
Alexandru Paraschiv ◽  
Teodor Badea ◽  
Viorel Badilita

The high-temperature oxidation behavior of selective laser melting (SLM) manufactured IN 625 was studied over 96 h of exposure at 900 °C and 1050 °C in air. An extensive analysis was performed to characterize the oxide scale formed and its evolution during the 96 h, including mass gain analysis, EDS, XRD, and morphological analysis of the oxide scale. The mass gain rate of the bare material increases rapidly during the first 8 h of temperature holding and diminishes at higher holding periods for both oxidation temperatures. High-temperature exposure for short periods (24 h) follows a parabolic law and promotes the precipitation of δ phase, Ni-rich intermetallics, and carbides. Within the first 24 h of exposure at 900 °C, a Cr2O3 and a (Ni, Fe)Cr2O4 spinel scale were formed, while at a higher temperature, a more complex oxide was registered, consisting of (Ni, Fe)Cr2O4, Cr2O3, and rutile-type oxides. Prolonged exposure of IN 625 at 900 °C induces the preservation of the Cr2O3 scale and the dissolution of carbides. Other phases and intermetallics, such as γ, δ phases, and MoNi4 are still present. The exposure for 96 h at 1050 °C led to the dissolution of all intermetallics, while the same complex oxide scale was formed.


2016 ◽  
Vol 35 (2) ◽  
pp. 177-183 ◽  
Author(s):  
Yong Su ◽  
Shunke Zhang ◽  
Guangyan Fu ◽  
Qun Liu ◽  
Yuanze Tang

AbstractThe oxidation behavior of Fe-Si-Ce alloys with different Ce content at 1,173 and 1,273 K has been studied by means of optical microscope (OM), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscope (SEM). Results show that the Ce addition refines the grain size of Fe-Si alloys, and correspondingly the grain size of the oxides decreases, which increases the grain boundary concentration and promotes the short-path diffusion of the alloying elements and oxygen. During oxidation, the positive effect of the grain refinement on the oxidation behavior of the alloy is more obvious than negative effect, so the Ce addition improves the oxidation resistances of the Fe-3Si alloys. Compared to Fe-3Si-0.5Ce alloy, Fe-3Si-5.0Ce alloy has the larger mass gain for the preferential oxidation of the excessive content of Ce exceeding its beneficial effects. The rare earth Ce changes the oxidation mechanism of Fe-Si alloys. Oxygen penetrates the oxide scales and reacts preferentially with Ce-rich phases, which results in the pinning effect and improves the adhesion of the oxide scales.


2014 ◽  
Vol 1019 ◽  
pp. 294-301
Author(s):  
H.C. Mantyi ◽  
L.A. Cornish ◽  
Lesley H. Chown ◽  
I. Alain Mwamba

Pure powders of titanium, aluminium, nickel and ruthenium were mechanically alloyed and melted in a button arc furnace under an argon atmosphere to produce two alloys of composition Ti-52.5Al-10.0Ni (at.%) and Ti-52.5Al-10.0Ni-0.2Ru (at.%). The alloys were then cut and metallographically prepared. Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to characterize the samples. Thermogravimetric analysis (TGA) was used to analyze the oxidation behavior from room temperature up to 1050°C. The alloys were also oxidized in air at 1050°C for 120 hours. The Ti-52.5Al-10.0Ni (at.%) alloy formed dendrites of γ-TiAl (55.6 at.% Al) surrounded by a eutectic of γ-TiAl + Al3NiTi2 (τ3) phases. The Ti-52.5Al-10.0Ni-0.2Ru (at.%) alloy formed dendrites of γ-TiAl (53.6 at.% Al) surrounded by a eutectic of γ-TiAl + Al3NiTi2 (τ3). The ruthenium was mostly in solid solution (0.3 at.%) in the Al3NiTi2 (τ3) phase, although traces of it were present in the dendrites (0.1 at.% Ru). When oxidized in air from room temperature to 1050°C, the as-cast Ti-52.5Al-10.0Ni-0.2Ru (at.%) had a mass gain of 0.60% and the as-cast Ti-52.5Al-10.0Ni (at.%) had a mass gain of 0.97%. Isothermal oxidation of both alloys at 1050°C for 120 hours formed mixed metal oxides of TiO2+Al2O3 on the surface.


2016 ◽  
Vol 35 (7) ◽  
pp. 677-683 ◽  
Author(s):  
Guangyan Fu ◽  
Huanzhang Xie ◽  
Yong Su ◽  
Zeyan Qi ◽  
Qiang Hou

AbstractAlY coating on 1Cr18Ni9Ti stainless steel was prepared by magnetron sputtering method and some of them were pre-oxidized or vacuum diffusion annealed at 600°C, and the effect of the coating with different treatments on the oxidation behavior of the stainless steel was studied at 1,100°C in air. Results show that the order of the 24-h oxidation mass gain for the specimens is the stainless steel without coating > the stainless steel with coating but without any pre-treatment > the stainless steel with AlY coating after pre-oxidation treatment > the stainless steel with AlY coating after vacuum diffusion annealing. After oxidation, a thick and loose Fe2O3/Cr2O3 film is formed on the stainless steel without coating, while thinner Fe2O3/Cr2O3 film is formed on the stainless steel with AlY coating. Compared to the oxidation film formed on the steel with pre-oxidized coating, the one formed on the steel with vacuum diffusion annealed coating is thinner and denser. The rare earth Y and its oxides Y2O3 in the coating produce reactive element effect and improve the ductility/adhesion of the oxide film, which enhances the oxidation resistance of the stainless steel, especially in the vacuum diffusion annealed AlY coating.


2004 ◽  
Vol 842 ◽  
Author(s):  
Akira Yamauchi ◽  
Kyousuke Yoshimi ◽  
Shuji Hanada

ABSTRACTIsothermal oxidation behavior of Mo/Mo5SiB2in-situ composites containing small amounts of Al was investigated under an Ar-20%O2 atmosphere in the temperature range of 1073–1673 K. The Mo/Mo5SiB2in-situ composites, (Mo-8.7mol%Si-17.4mol%B)100-xAlx (x=0, 1, 3, and 5mol%), were prepared by Ar arc-melting, and then homogenized at 2073 K for 24 h in an Ar-flow atmosphere. Without addition of Al, Mo/Mo5SiB2in-situ composite exhibits a rapid mass loss at the initial oxidation stage, followed by passive oxidation after the substrate is sealed with borosilicate glass in the temperature range of 1173–1473 K, whereas it exhibits a rapid mass gain around 1073 K. On the other hand, small Al additions, especially of 1 mol%, significantly improve the oxidation resistance of Mo/Mo5SiB2in-situ composites at temperatures from 1073–1573 K. The excellent oxidation resistance is considered to be due to the rapid formation of a continuous, dense scale of Al-Si-O complex oxides. The protective oxide scales contain crystalline oxides, and the amounts of the crystalline oxides obviously increase with Al concentration.


2016 ◽  
Vol 23 (05) ◽  
pp. 1650031
Author(s):  
JINGJIE DAI ◽  
HUIJUN YU ◽  
JIYUN ZHU ◽  
FEI WENG ◽  
CHUANZHONG CHEN

Ti–Al alloyed coating reinforced by nitrides was fabricated by laser surface alloying technique to improve mechanical properties and high temperature oxidation resistance of Ti–6Al–4V titanium alloy. Microstructures, mechanical properties and high temperature oxidation behavior of the alloyed coating were analyzed. The results show that the alloyed coating consisted of Ti3Al, TiAl2, TiN and Ti2AlN phases. Nitrides with different morphologies were dispersed in the alloyed coating. The maximum microhardness of the alloyed coating was 906[Formula: see text]HV. The friction coefficients of the alloyed coating at room temperature and high temperature were both one-fourth of the substrate. Mass gain of the alloyed coating oxidized at 800[Formula: see text]C for 1000[Formula: see text]h in static air was [Formula: see text][Formula: see text]mg/mm2, which was 1/35th of the substrate. No obvious spallation was observed for the alloyed coating after oxidation. The alloyed coating exhibited excellent mechanical properties and long-term high temperature oxidation resistance, which improved surface properties of Ti–6Al–4V titanium alloy significantly.


2013 ◽  
Vol 32 (4) ◽  
pp. 397-403
Author(s):  
Qun Liu ◽  
Guangyan Fu ◽  
Yong Su ◽  
Zhigang Zhang ◽  
Qi Xiong

AbstractThe effect of rare-earth element Y on high-temperature oxidation behavior of Cu-Si alloys at 973 and 1073 K in 0.1 MPa flowing pure O2 has been investigated. Results show at the two temperatures the mass gain of the alloys with different compositions follows the following sequence, Cu-3Si-1.0Y > Cu-3Si-0Y > Cu-3Si-0.5Y alloy. As the Y content increases, the grain size of the alloys decreases, which accelerates the diffusion rate of the alloying elements in the alloys and oxygen under the experimental conditions, increases the ratio of short-path diffusion, and promotes the formation of SiO2 and Y2O3. The three alloys do not form continuous oxide scales of SiO2 or Y2O3, but their rapid formation and dispersed distribution due to the grain-size reduction may also hinder the diffusion of alloying elements and oxygen, which is beneficial to improve the oxidation resistance of the Y-containing alloys. Thereby, the Cu-3Si-0.5Y alloy has good oxidation resistance. The Cu-3Si-1.0Y alloy exhibits largest mass gain among the three alloys, which is due to the fact that in the alloy with higher Y contend and finer grain size, more amount of Y2O3 is more quickly formed, whose mass occupy a more proportion in the whole mass gain of the alloy.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 97 ◽  
Author(s):  
Hang Duan ◽  
Yan Liu ◽  
Tiesong Lin ◽  
Hui Zhang ◽  
Zhengren Huang

Ni-(3~10) Ta and Ni-(3~10) Y alloys were fabricated by vacuum arc melting. The oxidation resistance of the alloys was studied by cyclic and isothermal oxidation tests at 800 °C in static air. The present work focused on the investigation of the effects of the alloying elements (Ta and Y) on the oxidation behavior of Ni-based alloys. The oxidation behavior of alloys was evaluated by mass gain, composition, as well as the microstructure of oxidized products. The experimental results indicated that Ta at a low content (3 wt %) had a positive role in enhancing oxidation resistance by decreasing the oxygen vacancy concentration of the oxide layer to prevent the inward diffusion of oxygen during oxidation, and the mass gain decreased from 2.9 mg·cm−2 to 1.7 mg·cm−2 (800 °C/200 h), while Y (3~10 wt %) degraded the oxidation resistance. However, it is worth mentioning that the pinning effect of Y2O3 increased the adhesion between the substrate and oxide layer by changing the growing patterns of the oxide layer from a plane growth to fibrous growth. Among the results, the bonding of the substrate and oxide layer was best in the Ni-3Y alloys.


Sign in / Sign up

Export Citation Format

Share Document