Research on Dynamic Behavior of Vehicle-Bridge System

2012 ◽  
Vol 256-259 ◽  
pp. 1462-1465
Author(s):  
Yan Hong Wu ◽  
Guang Cai Han ◽  
Zhi Qiang Liu ◽  
Fu Guo Bian

Dynamic behavior of a vehicle-bridge system model is presented. A set of time-varying equations of the system considering roughness surface of bridge are given. The equations are rewritten in the form of matrix for numerical simulation. Modal analysis of the equations is carried out. Simulation and visualization of the equations are given. Effects of different speeds and accelerations of moving vehicle and roughness surface of bridge on the vertical displacement of mid-span of bridge are studied.

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 311
Author(s):  
Chan-Jung Kim

Previous studies have demonstrated the sensitivity of the dynamic behavior of carbon-fiber-reinforced plastic (CFRP) material over the carbon fiber direction by performing uniaxial excitation tests on a simple specimen. However, the variations in modal parameters (damping coefficient and resonance frequency) over the direction of carbon fiber have been partially explained in previous studies because all modal parameters have only been calculated using the representative summed frequency response function without modal analysis. In this study, the dynamic behavior of CFRP specimens was identified from experimental modal analysis and compared five CFRP specimens (carbon fiber direction: 0°, 30°, 45°, 60°, and 90°) and an isotropic SCS13A specimen using the modal assurance criterion. The first four modes were derived from the SCS13A specimen; they were used as reference modes after verifying with the analysis results from a finite element model. Most of the four mode shapes were found in all CFRP specimens, and the similarity increased when the carbon fiber direction was more than 45°. The anisotropic nature was dominant in three cases of carbon fiber, from 0° to 45°, and the most sensitive case was found in Specimen #3.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Toshifumi Nogawa ◽  
Masayasu Saito ◽  
Naomichi Murashima ◽  
Yoshiyuki Takayama ◽  
Atsuro Yokoyama

Abstract Background Implant-supported removable partial dentures (ISRPDs) are an effective treatment for partially edentulous patients. ISRPDs improve patients’ satisfaction and oral function to a greater extent than RPDs by improving denture stability and enhancing support. However, the effect of a type of direct retainer on displacement of the abutment teeth and dentures in ISRPDs remains unclear. Therefore, we made a resin mandibular model of unilateral mandibular distal-extension partial edentulism for mechanical simulation and compared the dynamic behavior of the abutment teeth and the denture base among different tooth-borne retainers with various rigidities for RPDs and ISRPDs. Methods A resin mandibular model for mechanical simulation that had unilateral mandibular distal-extension edentulism and was missing the first molar, second molar, first premolar, and second premolar, and a denture fabricated from the patient’s computed tomography images were used. Three types of direct retainers with different connecting rigidities were evaluated. The vertical displacement of the denture base and buccal and lingual sides and the mesial displacement of the abutment teeth were measured. Results Regardless of the rigidity of the direct retainers and loading positions, the displacement of the denture bases in the ISRPDs was significantly smaller than that in the RPDs (P < 0.001). There was no significant difference in vertical displacement of the denture bases among direct retainers with various connecting rigidities in the ISRPDs. Conversely, horizontal displacement of the abutment teeth in both the RPDs and ISRPDs tended to be larger with the cone crown telescope, which has high rigidity, than with the cast cingulum rest and wire clasp, which have much lower rigidities. Conclusion Our results suggested that cast cingulum rest and wire clasps as direct retainers are appropriate ISRPDs to minimize denture movement and suppress displacement of the remaining teeth in patients with unilateral mandibular distal-extension partial edentulism.


Author(s):  
R. Dufour ◽  
J. Der Hagopian ◽  
M. Pompei ◽  
C. Garnier

Abstract The dynamic environment of embarqued structures such as radars or more generally electronic equipments consists of impacts, sine and large power spectrum excitations. Under these real conditions and amongst different kinds of isolation, the passive damper with nonlinear parameters can provide good performances. This paper is concerned with the dynamic behavior of rigid bodies on highly nonlinear mounts. The numerical simulation and the experiment carried out, show that the load-deflection behavior of the dampers have to be slightly ajusted with respect to impact vibrations to obtain a well designed behavior.


2011 ◽  
Vol 374-377 ◽  
pp. 702-705
Author(s):  
Wei Feng ◽  
Hui Min Li

In the underground building, Light environment and thermal environment is poorer, in order to improve the problem, this paper brings forward a new type of lighting and ventilation system model; discusses the principle and characteristics of transmission; and analyses the question that influences lighting and ventilated effect in the application. Structure design and numerical simulation is the focus of the next step.


1984 ◽  
Vol 106 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Rainer Nordmann

Investigations of the dynamic behavior of structures have become increasingly important in the design process of mechanical systems. To have a better understanding of the dynamic behavior of a structure, the knowledge of the modal parameters is very important. The powerful method of experimental modal analysis has been used to measure modal parameters in many mechanical engineering problems. But the method was mainly applied to nonrotating structures. This presentation shows improvements of the classical modal analysis for a successful application in rotating machinery with nonconservative effects. An example is given, investigating the modal parameters of an elastic rotor with oil film bearings.


2017 ◽  
Vol 27 (09) ◽  
pp. 1750142 ◽  
Author(s):  
Qiang Lai ◽  
Akif Akgul ◽  
Xiao-Wen Zhao ◽  
Huiqin Pei

An unique 4D autonomous chaotic system with signum function term is proposed in this paper. The system has four unstable equilibria and various types of coexisting attractors appear. Four-wing and four-scroll strange attractors are observed in the system and they will be broken into two coexisting butterfly attractors and two coexisting double-scroll attractors with the variation of the parameters. Numerical simulation shows that the system has various types of multiple coexisting attractors including two butterfly attractors with four limit cycles, two double-scroll attractors with a limit cycle, four single-scroll strange attractors, four limit cycles with regard to different parameters and initial values. The coexistence of the attractors is determined by the bifurcation diagrams. The chaotic and hyperchaotic properties of the attractors are verified by the Lyapunov exponents. Moreover, we present an electronic circuit to experimentally realize the dynamic behavior of the system.


Author(s):  
Luyi Han ◽  
◽  
Riliang Liu

A propeller blade, as a typical example of low-rigidity components, is prone to chatter and deformation in machining process, especially when large material removal is applied. In order to foresee the problems and then optimize the process, identification of the dynamic behavior of the workpiece is of great importance. This paper studies the dynamic characteristics of the workpiece in the machining process from plate to propeller blade using Finite Element Method. The results show that the time-varying natural frequencies of the workpiece decrease gradually at the beginning steps of the process due to the influence of material removal, and increases afterwards influenced by the geometry of the blade.


Sign in / Sign up

Export Citation Format

Share Document