Retention and Removal Efficiency of Riparian Wetlands on Non-Point Source Pollutants

2012 ◽  
Vol 260-261 ◽  
pp. 841-845 ◽  
Author(s):  
Jin Xu ◽  
Li Gang Xu ◽  
Lei Dong

Riparian wetlands is a very important buffer and transition zone between terrestrial ecosystems and aquatic ecosystems in the lake basin system. Its edge effects played a crucial ecological role in energy flow and material cycling. Riparian wetlands have been widely used as the treatment of wastewaters, pollution control and environmental enhancement have been gainning increasing interest and application. In this paper, a typical riparian wetland was selected as case study for retention and removal efficiency on non-point source pollutants. The experimental results showed that there was certain removal efficiency for nitrogen and phosphorus. But slight effectiveness improvements took place after wetlands have been operated for a few years. So their restoration should be implemented also with the objectives of increasing the purification efficiency of pollutants. Results in this study were helpful in providing the basis for theoretical basis of designing cost-effective lakeside buffer zone and in revealing the removal mechanism of nitrogen and phosphorus in reparian wetlands.

2000 ◽  
Vol 57 (5) ◽  
pp. 1080-1091 ◽  
Author(s):  
Marcus C Waldron ◽  
John A Colman ◽  
Robert F Breault

Riparian wetlands contaminated with Hg from an industrial point source were found to be important sites of production and release of methyl mercury (MeHg) in a 40-km reach of the Sudbury River in eastern Massachusetts. Stream discharge and concentration measurements were used to calculate annual mean loads for total Hg (ΣHg) and MeHg in contaminated river reaches, a reservoir, and a riparian wetland downstream from the industrial source. Budgets based on these loads indicate that the annual mean ΣHg load increased sixfold in a reach receiving flow from the point source, but the annual mean MeHg load did not increase. About 23% of the ΣHg load was removed by sedimentation during flow through the reservoir. Net production of MeHg in the reservoir was similar to that reported elsewhere for lakes receiving Hg from atmospheric deposition only. ΣHg concentrations and loads increased significantly as the river passed through the riparian wetland reach. On the basis of flooded wetland area, net production of MeHg was 15 times greater in the wetland reach than in wetland-associated drainages described in other studies.


2001 ◽  
Vol 1 (4) ◽  
pp. 177-184
Author(s):  
B.I. Dvorak ◽  
J.W. Schauble

Environmental engineers are frequently faced with uncertainty in making design decisions because the true value of many process parameters is unknown. In this study, the design of countercurrent air stripping towers was modeled using fuzzy numbers, taking into account uncertainties in mass transfer and Henry's constant. It was found that, in addition to cost, the risk of failure is an important design consideration for stripping tower design. A significant over-design is both cost-effective and results in less risk of design failure. The air-to-water ratio that yielded the least risk of failure switched from low to high as the removal efficiency of the tower increased. An important result is that at lower removal efficiencies, tower design and operation is most sensitive to uncertainties in mass transfer and at higher removal efficiencies, tower design and operation is most sensitive to uncertainties in Henry's constant . The implication is that low air-to-water ratios are best when the regulatory target removal efficiency is low and/or when the uncertainty in the value of the contaminant's Henry's constant is larger than the uncertainty in the mass transfer coefficient value. Otherwise a high air-to-water ratio results in the least risk of process failure.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 101-110 ◽  
Author(s):  
W. v. d. Emde ◽  
H. Fleckseder ◽  
N. Matsché ◽  
F. Plahl-Wabnegg ◽  
G. Spatzierer ◽  
...  

Neusiedlersee (in German) / Fertö tó (in Hungarian) is a shallow lake at the Austro-Hungarian border. In the late 1970s, the question arose what to do in order to protect the lake against eutrophication. A preliminary report established the need for point-source control as well as gave first estimates for non-point source inputs. The proposed point-source control was quickly implemented, non-point sources were - among other topics - studied in detail in the period 1982 - 1986. The preliminary work had shown, based on integrated sampling and data from literature, that the aeolic input outweighed the one via water erosion (work was for totP only). In contrast to this, the 1982 - 1986 study showed that (a) water erosion by far dominates over aeolic inputs and (b) the size of nonpoint-source inputs was assessed for the largest catchment area in pronounced detail, whereas additional estimates were undertaken for smaller additional catchment areas. The methods as well as the results are presented in the following. The paper concludes with some remarks on the present management practice of nonpoint-source inputs.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Gonzalo M. Figueroa-Torres ◽  
Jon K. Pittman ◽  
Constantinos Theodoropoulos

Abstract Background The production of microalgal biofuels, despite their sustainable and renowned potential, is not yet cost-effective compared to current conventional fuel technologies. However, the biorefinery concept increases the prospects of microalgal biomass as an economically viable feedstock suitable for the co-production of multiple biofuels along with value-added chemicals. To integrate biofuels production within the framework of a microalgae biorefinery, it is not only necessary to exploit multi-product platforms, but also to identify optimal microalgal cultivation strategies maximising the microalgal metabolites from which biofuels are obtained: starch and lipids. Whilst nutrient limitation is widely known for increasing starch and lipid formation, this cultivation strategy can greatly reduce microalgal growth. This work presents an optimisation framework combining predictive modelling and experimental methodologies to effectively simulate and predict microalgal growth dynamics and identify optimal cultivation strategies. Results Microalgal cultivation strategies for maximised starch and lipid formation were successfully established by developing a multi-parametric kinetic model suitable for the prediction of mixotrophic microalgal growth dynamics co-limited by nitrogen and phosphorus. The model’s high predictive capacity was experimentally validated against various datasets obtained from laboratory-scale cultures of Chlamydomonas reinhardtii CCAP 11/32C subject to different initial nutrient regimes. The identified model-based optimal cultivation strategies were further validated experimentally and yielded significant increases in starch (+ 270%) and lipid (+ 74%) production against a non-optimised strategy. Conclusions The optimised microalgal cultivation scenarios for maximised starch and lipids, as identified by the kinetic model presented here, highlight the benefits of exploiting modelling frameworks as optimisation tools that facilitate the development and commercialisation of microalgae-to-fuel technologies.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1461
Author(s):  
Roberto Braglia ◽  
Lorenza Rugnini ◽  
Sara Malizia ◽  
Francesco Scuderi ◽  
Enrico Luigi Redi ◽  
...  

Increasing levels of freshwater contaminants, mainly due to anthropogenic activities, have resulted in a great deal of interest in finding new eco-friendly, cost-effective and efficient methods for remediating polluted waters. The aim of this work was to assess the feasibility of using a green microalga Desmodesmus sp., a cyanobacterium Nostoc sp. and a hemicryptophyte Ampelodesmos mauritanicus to bioremediate a water polluted with an excess of nutrients (nitrogen and phosphorus) and heavy metals (copper and nickel). We immediately determined that Nostoc sp. was sensitive to metal toxicity, and thus Desmodesmus sp. was chosen for sequential tests with A. mauritanicus. First, A. mauritanicus plants were grown in the ‘polluted’ culture medium for seven days and were, then, substituted by Desmodesmus sp. for a further seven days (14 days in total). Heavy metals were shown to negatively affect both the growth rates and nutrient removal capacity. The sequential approach resulted in high metal removal rates in the single metal solutions up to 74% for Cu and 85% for Ni, while, in the bi-metal solutions, the removal rates were lower and showed a bias for Cu uptake. Single species controls showed better outcomes; however, further studies are necessary to investigate the behavior of new species.


2003 ◽  
Vol 47 (11) ◽  
pp. 189-194 ◽  
Author(s):  
Q.J. Yu ◽  
H. Xu ◽  
D. Yao ◽  
P. Williams

Biofilm (or attached growth) reactors can be effectively used to treat organic wastewater from various industries such as food processing industry. They have a number of advantages including high organic loading rates (OLRs) and improved operational stability. A flexible fibre biofim reactor (FFBR) has been developed for efficient and cost effective treatment of food processing wastewater. In the process, simple flexible fibre packing with a very high specific surface area is used as support for microorganisms. The COD removal efficiencies for a range of OLRs have been studied. The FFBR can support an increasingly high OLR, but with a corresponding decrease in the COD removal efficiency. Therefore, a two-stage FFBR was developed to increase the treatment efficiency for systems with high OLRs. Experimental results indicated that a high overall COD removal efficiency could be achieved. At an influent COD of about 2700 mg/L and an OLR of 7.7 kgCOD/m3d, COD removal efficiencies of 76% and 82% were achieved in the first and the second stage of the reactor, respectively. The overall COD removal efficiency was 96%. Therefore, even for wastewater samples with high organic strength, high quality treated effluents could be readily achieved by the use of multiple stage FFBRs.


Sign in / Sign up

Export Citation Format

Share Document